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Uncertainty Analysis in CFD, Verification and Validation Methodology and Pro-

cedures 
 
1. PURPOSE OF PROCEDURE 

Provide methodology and procedures for es-
timating the uncertainty in a simulation result. 

2. INTRODUCTION 

Revision 01 was a revision of QM Proce-
dures 4.9-04-01-01 “Uncertainty Analysis in 
CFD, Uncertainty Assessment Methodology” 
and 4.9-04-01-02 “Uncertainty Analysis in 
CFD, Guidelines for RANS Codes,” which were 
prepared and recommended by 22nd Resistance 
Committee and adopted as interim procedures. 
The QM Procedures were largely based on the 
methodology and procedures of Stern et al. 
(1999) [most recently Stern et al. (2001) and 
Wilson et al. (2001)] and Coleman and Stern 
(1997). Valuable experience was also gained at 
Gothenburg 2000 A Workshop on Numerical 
Ship Hydrodynamics (Larsson et al., 2000) 
where present QM Procedures were recom-
mended and used. 

Revision 01 QM Procedure 7.5-03-01-01 
“Uncertainty Analysis in CFD, Verification and 
Validation Methodology and Procedures” was 
updated for clarity of presentation and expanded 
discussion of verification procedures and imple-
mentation based on three years experience, as 
discussed in Section 7 of 23rd ITTC RC Report. 
In particular, verification procedures were ex-
panded to include user options of either correc-
tion factors or factor of safety approaches for es-
timating numerical errors and uncertainties and 
discussion was provided on fundamental and 
practical issues to aid in implementation of ver-
ification procedures. 

Revision 02 QM Procedure 7.5-03-01-01 
“Uncertainty Analysis in CFD, Verification and 
Validation Methodology and Procedures” is a 
minor update of Revision 01, in which the latest 
revisions to the correction factor approach have 
been incorporated. These modifications have 
been discussed in Section 4.3. 

Revision 03 of this procedure is a minor up-
date of Revision 02, in which the references to 
the ISO document have been updated to the lat-
est issue of the JCGM GUM, and further details 
of the Least Squares Root method for estimating 
error have been added.  

The symbols used in the procedure have 
been checked against the list of symbols in An-
nex J of the JCGM document “Evaluation of 
measurement data – Guide to the expression of 
uncertainty in Measurement” or GUM (JCGM, 
2008), proposed by the Quality Systems Group 
of the 28th ITTC to be used as a reference. The 
GUM is entirely and specifically intended for 
uncertainty estimation for measurements and 
therefore most of the symbols are not related to 
the recommended procedure at hand. The sym-
bols most closely connected with this procedure 
are the ones for uncertainty. In the standards 
document the uppercase symbol (𝑈𝑈) is used for 
expanded uncertainty of an estimate that defines 
an interval 𝑦𝑦 − 𝑈𝑈 < 𝑌𝑌 < 𝑦𝑦 + 𝑈𝑈 having a high 
level of confidence and is equal to the coverage 
factor 𝑘𝑘 times the standard combined uncer-
tainty. Lower case symbol (𝑢𝑢) is used for stand-
ard uncertainty of an estimate that is the positive 
square root of the estimated variance. Due to ob-
vious similarities between the use of the cover-
age factor and the uncertainty estimation in this 



 

ITTC – Recommended 
Procedures and Guidelines 

7.5-03 
-01-01 

Page 4 of 15 

Uncertainty Analysis in CFD Verification 
and Validation Methodology and Proce-

dures 

Effective Date 
2021 

Revision 
04 

 
procedure, the use of upper case symbols for un-
certainty has been retained. Therefore, also in 
terms of symbols, only minor modifications 
have been. These are all related to the subscripts 
used. In the GUM the different input parameters 
are defined with subscript i . To be in line with 
the standards document the corresponding sub-
scripts have been changed. Additionally, in or-
der to improve legibility, the use of subscripts of 
subscripts has been minimized and most of these 
have been moved into subscripts with comma 
separating the items. 

Present verification procedures are consid-
ered best presently available and further work is 
also recommended for improved procedures, 
which once available can be incorporated. Vali-
dation procedures were not changed. In the fol-
lowing an overview of the overall verification 
and validation approach is provided, including 
methodology and procedures. Stern et al. (2001) 
should be consulted for detailed presentation 
and discussions. 

3. VERIFICATION AND VALIDATION 
METHODOLOGY 

The definitions of errors and uncertainties 
directly follow those used in experimental un-
certainty analysis. The simulation error δS is de-
fined as the difference between a simulation re-
sult S and the truth T and is composed of addi-
tive modelling δSM and numerical δSN errors (i.e., 
𝛿𝛿𝑆𝑆 = 𝑆𝑆 − 𝑇𝑇 = 𝛿𝛿𝑆𝑆𝑆𝑆 + 𝛿𝛿𝑆𝑆𝑆𝑆). For certain condi-
tions, both the sign and magnitude of the numer-
ical error can be estimated as 𝛿𝛿𝑆𝑆𝑆𝑆 = 𝛿𝛿𝑆𝑆𝑆𝑆∗ + 𝜀𝜀𝑆𝑆𝑆𝑆 
where 𝛿𝛿𝑆𝑆𝑆𝑆∗  is an estimate of the sign and magni-
tude of 𝛿𝛿𝑆𝑆𝑆𝑆 and 𝜀𝜀𝑆𝑆𝑆𝑆 is the error in that estimate. 
The simulation value is corrected to provide a 
numerical benchmark 𝑆𝑆𝐶𝐶, which is defined 

𝑆𝑆𝐶𝐶 = 𝑆𝑆 − 𝛿𝛿𝑆𝑆𝑆𝑆∗   (1) 

Verification is defined as a process for as-
sessing simulation numerical uncertainty 𝑈𝑈𝑆𝑆𝑆𝑆 
and, when conditions permit, estimating the sign 
and magnitude 𝛿𝛿𝑆𝑆𝑆𝑆∗  of the simulation numerical 
error itself and the uncertainty in that error esti-
mate 𝑈𝑈𝑆𝑆𝐶𝐶𝑆𝑆. For the uncorrected simulation ap-
proach, numerical error is decomposed into con-
tributions from iteration number 𝛿𝛿𝐼𝐼, grid size 𝛿𝛿𝐺𝐺, 
time step 𝛿𝛿𝑇𝑇, and other parameters 𝛿𝛿𝑃𝑃, which 
gives the following expression for simulation 
numerical uncertainty 

𝑈𝑈𝑆𝑆𝑆𝑆2 = 𝑈𝑈𝐼𝐼2 + 𝑈𝑈𝐺𝐺2 + 𝑈𝑈𝑇𝑇2 + 𝑈𝑈𝑃𝑃2 (2) 

For the corrected simulation approach, the 
solution is corrected to produce a numerical 
benchmark 𝑆𝑆𝐶𝐶 and the estimated simulation nu-
merical error 𝛿𝛿𝑆𝑆𝑆𝑆∗  and corrected uncertainty 𝑈𝑈𝑆𝑆𝑐𝑐𝑆𝑆 
are given by 

𝛿𝛿𝑆𝑆𝑆𝑆∗ = 𝛿𝛿𝐼𝐼∗ + 𝛿𝛿𝐺𝐺∗ + 𝛿𝛿𝑇𝑇∗ + 𝛿𝛿𝑃𝑃∗  (3) 

𝑈𝑈𝑆𝑆𝑐𝑐𝑆𝑆
2 = 𝑈𝑈𝐼𝐼𝐶𝐶

2 + 𝑈𝑈𝐺𝐺𝐶𝐶
2 + 𝑈𝑈𝑇𝑇𝐶𝐶

2 + 𝑈𝑈𝑃𝑃𝐶𝐶
2  (4) 

Validation is defined as a process for as-
sessing simulation modelling uncertainty 𝑈𝑈𝑆𝑆𝑆𝑆 
by using benchmark experimental data and, 
when conditions permit, estimating the sign and 
magnitude of the modelling error 𝛿𝛿𝑆𝑆𝑆𝑆 itself. The 
comparison error 𝐸𝐸 is given by the difference in 
the data 𝐷𝐷and simulation 𝑆𝑆 values 

𝐸𝐸 = 𝐷𝐷 − 𝑆𝑆 = 𝛿𝛿𝐷𝐷 − (𝛿𝛿𝑆𝑆𝑆𝑆 + 𝛿𝛿𝑆𝑆𝑆𝑆) (5) 

Modelling errors 𝛿𝛿𝑆𝑆𝑆𝑆 can be decomposed 
into modelling assumptions and use of previous 
data. To determine if validation has been 
achieved, 𝐸𝐸 is compared to the validation uncer-
tainty 𝑈𝑈𝑉𝑉 given by 

𝑈𝑈𝑉𝑉2 = 𝑈𝑈𝐷𝐷2 + 𝑈𝑈𝑆𝑆𝑆𝑆2   (6) 

If |𝐸𝐸| < 𝑈𝑈𝑉𝑉, the combination of all the errors 
in 𝐷𝐷and 𝑆𝑆is smaller than 𝑈𝑈𝑉𝑉and validation is 
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achieved at the 𝑈𝑈𝑉𝑉 level. If 𝑈𝑈𝑉𝑉 << |𝐸𝐸|, the sign 
and magnitude of 𝐸𝐸 ≈ 𝛿𝛿𝑆𝑆𝑆𝑆 can be used to make 
modelling improvements. For the corrected sim-
ulation, equations equivalent to Eqs. (5) and (6) 
are 

𝐸𝐸 = 𝐷𝐷 − 𝑆𝑆𝐶𝐶 = 𝛿𝛿𝐷𝐷 − (𝛿𝛿𝑆𝑆𝑆𝑆 + 𝜀𝜀𝑆𝑆𝑆𝑆) (7) 

𝑈𝑈𝑉𝑉𝐶𝐶
2 = 𝑈𝑈𝐸𝐸𝐶𝐶

2 − 𝑈𝑈𝑆𝑆𝑆𝑆2 = 𝑈𝑈𝐷𝐷2 + 𝑈𝑈𝑆𝑆𝐶𝐶𝑆𝑆
2  (8) 

4. VERIFICATION PROCEDURES 

4.1 Convergence Studies 

Iterative and parameter convergence studies 
are conducted using multiple solutions (at least 
3) with systematic parameter refinement by var-
ying the ith input parameter Δ𝑥𝑥𝑖𝑖 while holding all 
other parameters constant. The present work as-
sumes input parameters can be expressed such 
that the finest resolution corresponds to the limit 
of infinitely small parameter values. Many com-
mon input parameters are of this form, e.g., grid 
spacing, time step, and artificial dissipation. Ad-
ditionally, a uniform parameter refinement ratio 
𝑟𝑟𝑖𝑖 = Δ𝑥𝑥𝑖𝑖,2/Δ𝑥𝑥𝑖𝑖,1 = Δ𝑥𝑥𝑖𝑖,3/Δ𝑥𝑥𝑖𝑖,2 = Δ𝑥𝑥𝑖𝑖,𝑚𝑚/Δ𝑥𝑥𝑖𝑖,𝑚𝑚−1 

between solutions is assumed for presentation 
purposes, but not required. Iterative errors must 
be accurately estimated or negligible in compar-
ison to errors due to input parameters before ac-
curate convergence studies can be conducted. 

Careful consideration should be given to se-
lection of uniform parameter refinement ratio. 
The most appropriate values for industrial CFD 
are not yet fully established. Small values (i.e., 
very close to one) are undesirable since solution 
changes will be small and sensitivity to input pa-
rameter may be difficult to identify compared to 
iterative errors. Large values alleviate this prob-
lem; however, they also may be undesirable 

since the finest step size may be prohibitively 
small (i.e., require many steps) if the coarsest 
step size is designed for sufficient resolution 
such that similar physics are resolved for all m 
solutions. Also, similarly as for small values, so-
lution changes for the finest step size may be dif-
ficult to identify compared to iterative errors 
since iterative convergence is more difficult for 
small step size. Another issue is that for param-
eter refinement ratio other than 𝑟𝑟𝑖𝑖 = 2, interpo-
lation to a common location is required to com-
pute solution changes, which introduces interpo-
lation errors. Roache (1998) discusses methods 
for evaluating interpolation errors. However, for 
industrial CFD, 𝑟𝑟𝑖𝑖 = 2 may often be too large. A 
good alternative may be 𝑟𝑟𝑖𝑖 = √2, as it provides 
fairly large parameter refinement ratio and at 
least enables prolongation of the coarse-param-
eter solution as an initial guess for the fine-pa-
rameter solution. 

Convergence studies require a minimum of 
𝑚𝑚 = 3 solutions to evaluate convergence with 
respect to input parameter. Note that 𝑚𝑚 = 2 is 
inadequate, as it only indicates sensitivity and 
not convergence, and that 𝑚𝑚 > 3 may be re-
quired. Changes between medium-fine 𝜀𝜀𝑖𝑖,21 =
�̂�𝑆𝑖𝑖,2 − �̂�𝑆𝑖𝑖,1 and coarse-medium 𝜀𝜀𝑖𝑖,32 = �̂�𝑆𝑖𝑖,3 − �̂�𝑆𝑖𝑖,2 
solutions are used to define the convergence ra-
tio 

𝑅𝑅𝑖𝑖 = 𝜀𝜀𝑖𝑖,21/𝜀𝜀𝑖𝑖,32   (9) 

and to determine convergence condition where 
�̂�𝑆𝑖𝑖,1, �̂�𝑆𝑖𝑖,2, �̂�𝑆𝑖𝑖,3 correspond to solutions with fine, 
medium, and coarse input parameter, respec-
tively, corrected for iterative errors. Three con-
vergence conditions are possible: 

(i) Monotonic convergence: 0 < 𝑅𝑅𝑖𝑖 < 1 

(ii) Oscillatory convergence: 𝑅𝑅𝑖𝑖 < 0           (10) 
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(iii) Divergence: 𝑅𝑅𝑖𝑖 > 1 

For condition (i), generalized Richardson 
extrapolation (RE) is used to estimate 𝑈𝑈𝑖𝑖or 𝛿𝛿𝑖𝑖∗ 
and 𝑈𝑈𝑖𝑖𝐶𝐶. For condition (ii), uncertainties are es-
timated simply by attempting to bound the error 
based on oscillation maximums 𝑆𝑆𝑈𝑈 and mini-
mums 𝑆𝑆𝐿𝐿, i.e., 𝑈𝑈𝑖𝑖 = 1

2
(𝑆𝑆𝑈𝑈 − 𝑆𝑆𝐿𝐿). For oscillatory 

convergence (ii), the solutions exhibit oscilla-
tions, which may be erroneously identified as 
condition (i) or (iii). This is apparent if one con-
siders evaluating convergence condition from 
three points on a sinusoidal curve (Coleman et 
al., 2001). Depending on where the three points 
fall on the curve, the condition could be incor-
rectly diagnosed as either mono-tonic conver-
gence or divergence. Bounding the error based 
on oscillation maximum and minimum for con-
dition (ii) requires more than 𝑚𝑚 = 3 solutions. 
For condition (iii), errors and uncertainties can-
not be estimated. 

4.2 Generalized Richardson Extrapolation 

For convergence condition (i), generalized 
RE is used to estimate the error 𝛿𝛿𝑖𝑖∗ due to selec-
tion of the ith input parameter and order-of-accu-
racy 𝑝𝑝𝑖𝑖. The error is expanded in a power series 
expansion with integer powers of Δ𝑥𝑥𝑖𝑖 as a finite 
sum. The accuracy of the estimates depends on 
how many terms are retained in the expansion, 
the magnitude (importance) of the higher-order 
terms, and the validity of the assumptions made 
in RE theory. 

With three solutions, only the leading term 
can be estimated, which provides one-term esti-
mates for error and order of accuracy 

𝛿𝛿𝑅𝑅𝐸𝐸𝑖𝑖,1
∗(1) = 𝜀𝜀𝑖𝑖,21

𝑟𝑟𝑖𝑖
𝑝𝑝𝑖𝑖−1

  (11) 

𝑝𝑝𝑖𝑖 = ln�𝜀𝜀𝑖𝑖,32/𝜀𝜀𝑖𝑖,21�
ln(𝑟𝑟𝑖𝑖)

  (12) 

With five solutions, two terms can be esti-
mated, which provides two-term estimates for 
error and orders of accuracy 

𝛿𝛿𝑅𝑅𝐸𝐸𝑖𝑖,1
∗(2) =

𝑟𝑟𝑖𝑖
𝑞𝑞𝑖𝑖𝜀𝜀𝑖𝑖,21−𝜀𝜀𝑖𝑖,32

�𝑟𝑟𝑖𝑖
𝑞𝑞𝑖𝑖−𝑟𝑟𝑖𝑖

𝑝𝑝𝑖𝑖��𝑟𝑟𝑖𝑖
𝑝𝑝𝑖𝑖−1�

−
𝑟𝑟𝑖𝑖
𝑝𝑝𝑖𝑖𝜀𝜀𝑖𝑖,21−𝜀𝜀𝑖𝑖,32

�𝑟𝑟𝑖𝑖
𝑞𝑞𝑖𝑖−𝑟𝑟𝑖𝑖

𝑝𝑝𝑖𝑖��𝑟𝑟𝑖𝑖
𝑞𝑞𝑖𝑖−1�

  (13) 

𝑝𝑝𝑖𝑖 =
ln��𝑎𝑎𝑖𝑖+�𝑏𝑏𝑖𝑖�/�2�𝜀𝜀𝑖𝑖,21𝜀𝜀𝑖𝑖,43−𝜀𝜀𝑖𝑖,32

2 ���

ln(𝑟𝑟𝑖𝑖)

𝑞𝑞𝑖𝑖 =
ln��𝑎𝑎𝑖𝑖−�𝑏𝑏𝑖𝑖�/�2�𝜀𝜀𝑖𝑖,21𝜀𝜀𝑖𝑖,43−𝜀𝜀𝑖𝑖,32

2 ���

ln(𝑟𝑟𝑖𝑖)

 (14) 

where 
𝑎𝑎𝑖𝑖 = 𝜀𝜀𝑖𝑖,21𝜀𝜀𝑖𝑖,54 − 𝜀𝜀𝑖𝑖,32𝜀𝜀𝑖𝑖,43
𝑏𝑏𝑖𝑖 = −3𝜀𝜀𝑖𝑖,322 𝜀𝜀𝑖𝑖,432 + 4�𝜀𝜀𝑖𝑖,21𝜀𝜀𝑖𝑖,433 + 𝜀𝜀𝑖𝑖,323 𝜀𝜀𝑖𝑖,54�
         −6𝜀𝜀𝑖𝑖,21𝜀𝜀𝑖𝑖,32𝜀𝜀𝑖𝑖,43𝜀𝜀𝑖𝑖,54 + 𝜀𝜀𝑖𝑖,212 𝜀𝜀𝑖𝑖,542

 

Solutions for analytical benchmarks show 
that the range of applicability for Eqs. (13) and 
(14) is more restrictive than that for Eqs. (11) 
and (12) since all five solutions must be both 
monotonically convergent and sufficiently close 
to the asymptotic range to evaluate 𝑝𝑝𝑖𝑖 and 𝑞𝑞𝑖𝑖 in 
Eq. (14). In general, 𝑚𝑚 = 2𝑛𝑛 + 1 solutions are 
required to estimate the first 𝑛𝑛 terms of the error 
expansion. 

4.3 Estimating Errors and Uncertainties 
with Correction Factor 

The concept of correction factors is based on 
verification studies for 1D wave equation, 2D 
Laplace equation, and Blasius boundary layer 
analytical benchmarks for which it is shown that 
a multiplicative correction factor is useful as a 
quantitative metric to determine proximity of 
the solutions to the asymptotic range, to account 



 

ITTC – Recommended 
Procedures and Guidelines 

7.5-03 
-01-01 

Page 7 of 15 

Uncertainty Analysis in CFD Verification 
and Validation Methodology and Proce-

dures 

Effective Date 
2021 

Revision 
04 

 
for the effects of higher-order terms, and for es-
timating errors and uncertainties. The error is 
defined as 

𝛿𝛿𝑖𝑖,1∗ = 𝐶𝐶𝑖𝑖𝛿𝛿𝑅𝑅𝐸𝐸𝑖𝑖,1
∗ = 𝐶𝐶𝑖𝑖 �

𝜀𝜀𝑖𝑖,21
𝑟𝑟𝑖𝑖
𝑝𝑝𝑖𝑖−1

� (15) 

where two expressions for the correction factor 
𝐶𝐶𝑖𝑖 were developed. The first is based on solution 
of Eq. (15) for 𝐶𝐶𝑖𝑖with 𝛿𝛿𝑅𝑅𝐸𝐸𝑖𝑖,1

∗  based on Eq. (11) 
but replacing 𝑝𝑝𝑖𝑖with the improved estimate 𝑝𝑝𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 

𝐶𝐶𝑖𝑖 =
𝑟𝑟𝑖𝑖
𝑝𝑝𝑖𝑖−1

𝑟𝑟𝑖𝑖
𝑝𝑝𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒−1

  (16) 

𝑝𝑝𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 is an estimate for the limiting order of ac-
curacy of the first term as spacing size goes to 
zero and the asymptotic range is reached so that 
𝐶𝐶𝑖𝑖 → 1. Similarly, the second is based on a two-
term estimate of the power series which is used 
to estimate 𝛿𝛿𝑅𝑅𝐸𝐸𝑖𝑖,1

∗  where 𝑝𝑝𝑖𝑖 and 𝑞𝑞𝑖𝑖 are replaced 
with 𝑝𝑝𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 and 𝑞𝑞𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 

𝐶𝐶𝑖𝑖 =
�𝜀𝜀𝑖𝑖,32/𝜀𝜀𝑖𝑖,21−𝑟𝑟𝑖𝑖

𝑞𝑞𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒��𝑟𝑟𝑖𝑖
𝑝𝑝𝑖𝑖−1�

�𝑟𝑟𝑖𝑖
𝑝𝑝𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒−𝑟𝑟𝑖𝑖

𝑞𝑞𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒��𝑟𝑟𝑖𝑖
𝑝𝑝𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒−1�

+
�𝜀𝜀𝑖𝑖,32/𝜀𝜀𝑖𝑖,21−𝑟𝑟𝑖𝑖

𝑝𝑝𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒��𝑟𝑟𝑖𝑖
𝑝𝑝𝑖𝑖−1�

�𝑟𝑟𝑖𝑖
𝑝𝑝𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒−𝑟𝑟𝑖𝑖

𝑞𝑞𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒��𝑟𝑟𝑖𝑖
𝑞𝑞𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒−1�

 (17) 

Eq. (16) roughly accounts for the effects of 
higher-order terms by replacing 𝑝𝑝𝑖𝑖 with 𝑝𝑝𝑖𝑖𝑒𝑒𝑒𝑒𝑒𝑒 
thereby improving the single-term estimate, 
while Eq. (17) more rigorously accounts for 
higher-order terms since it is derived from a 
two-term estimate. Both expressions for 𝐶𝐶𝑖𝑖 only 
require three solutions to estimate errors using 
Eq. (15). Solutions for analytical benchmarks 
show that correction of error estimates with both 
expressions for 𝐶𝐶𝑖𝑖 yields improved error esti-
mates. 

Expressions for uncertainties are developed 
from error estimates in Eq. (15). When solutions 

are far from the asymptotic range, 𝐶𝐶𝑖𝑖 is suffi-
ciently less than or greater than 1 and only the 
magnitude of the error is estimated through the 
uncertainty 𝑈𝑈𝑖𝑖. Eq. (15) is used to estimate 𝑈𝑈𝑖𝑖 by 
bounding the error 𝛿𝛿𝑖𝑖,1∗  by the sum of the abso-
lute value of the corrected estimate from RE and 
the absolute value of the amount of the correc-
tion 

𝑈𝑈𝑖𝑖 = (|𝐶𝐶𝑖𝑖| + |1 − 𝐶𝐶𝑖𝑖|)�𝛿𝛿𝑅𝑅𝐸𝐸𝑖𝑖,1
∗ � (18) 

It is shown by Wilson and Stern (2002) that Eq. 
(18) is not conservative enough for 𝐶𝐶𝑖𝑖 < 1, 
which motivates development of an improved 
estimate 

𝑈𝑈𝑖𝑖 = (2|1 − 𝐶𝐶𝑖𝑖| + 1)�𝛿𝛿𝑅𝑅𝐸𝐸𝑖𝑖,1
∗ � (19) 

When solutions are close to the asymptotic 
range, 𝐶𝐶𝑖𝑖 is close to 1 so that 𝛿𝛿𝑖𝑖∗ is estimated us-
ing Eq. (15) and 𝑈𝑈𝑖𝑖𝐶𝐶 is estimated by 

𝑈𝑈𝑖𝑖𝐶𝐶 = |1 − 𝐶𝐶𝑖𝑖|�𝛿𝛿𝑅𝑅𝐸𝐸𝑖𝑖,1
∗ �  (20) 

Eq. (20) has the correct form for both 𝐶𝐶𝑖𝑖 < 1 and 
𝐶𝐶𝑖𝑖 > 1. It should be recognized that using the 
corrected simulation approach requires in addi-
tion to 𝐶𝐶𝑖𝑖 close to 1 that one have confidence in 
Eq. (15). There are many reasons for lack of 
confidence, especially for complex three-di-
mensional flows. 

As pointed out by Roache (2003) Eqs. (19) 
and (20) have the short-coming that as 𝐶𝐶𝑘𝑘 → 1 
the method reverts to Richardson Extrapolation, 
which produces only ~50% uncertainty esti-
mate. Based on this criticism a further revision 
of the uncertainty estimates have been presented 
by Wilson et al. (2004). The final uncertainty es-
timates for the uncorrected and corrected ap-
proaches respectively are given as 
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𝑈𝑈𝑖𝑖 =

�
[9.6(1 − 𝐶𝐶𝑖𝑖)2 + 1.1]�𝛿𝛿𝑅𝑅𝐸𝐸𝑖𝑖,1

∗ �, |1 − 𝐶𝐶𝑖𝑖| < 0.125

[2|1 − 𝐶𝐶𝑖𝑖| + 1]�𝛿𝛿𝑅𝑅𝐸𝐸𝑖𝑖,1
∗ �, |1 − 𝐶𝐶𝑖𝑖| ≥ 0.125

  (21) 

𝑈𝑈𝑖𝑖𝐶𝐶 =

�
[2.4(1 − 𝐶𝐶𝑖𝑖)2 + 0.1]�𝛿𝛿𝑅𝑅𝐸𝐸𝑖𝑖,1

∗ �, |1 − 𝐶𝐶𝑖𝑖| < 0.25

[|1 − 𝐶𝐶𝑖𝑖|]�𝛿𝛿𝑅𝑅𝐸𝐸𝑖𝑖,1
∗ �, |1 − 𝐶𝐶𝑖𝑖| ≥ 0.25

  (22) 

These uncertainty estimates merge smoothly 
with the previous uncertainty estimates and pro-
vide 10% factor of safety in the limit 𝐶𝐶𝑖𝑖 = 1. 

4.4 Estimating Uncertainties with Factors of 
Safety 

Alternatively, a factor of safety approach 
(Roache, 1998) can be used to define the uncer-
tainty 𝑈𝑈𝑖𝑖 where an error estimate from RE is 
multiplied by a factor of safety 𝐹𝐹𝑆𝑆to bound sim-
ulation error 

𝑈𝑈𝑖𝑖 = 𝐹𝐹𝑆𝑆�𝛿𝛿𝑅𝑅𝐸𝐸𝑖𝑖,1
∗ �  (23) 

where 𝛿𝛿𝑅𝑅𝐸𝐸𝑖𝑖,1
∗  can be based on a single- or two-

term estimate as given by Eq. (11) or (13), re-
spectively with either assumed or estimated or-
der of accuracy. If order of accuracy is assumed 
(e.g., based on theoretical values), only two or 
three solutions are required for evaluation of Eq. 
(11) or (13), respectively. 

Although not proposed by Roache (1998), 
the factor of safety approach can be used for sit-
uations where the solution is corrected with an 
error estimate from RE as 

𝑈𝑈𝑖𝑖𝐶𝐶 = (𝐹𝐹𝑆𝑆 − 1)�𝛿𝛿𝑅𝑅𝐸𝐸𝑖𝑖,1
∗ �  (24) 

The exact value for factor of safety is somewhat 
ambiguous and 𝐹𝐹𝑆𝑆 = 1.25 is recommended for 
careful grid studies and 3 for cases in which only 
two grids are used and order of accuracy is as-
sumed from the theoretical value 𝑝𝑝𝑡𝑡ℎ. 

4.5 Estimating Errors and Uncertainties us-
ing a Least Squares Root approach 

Where there is scatter in the numerical solu-
tions, common in complex flows with relatively 
coarse grids, or where the use of unstructured 
grids leads to variability in the grids, the error 
can be estimated using a Least Squares Root 
method (LSR) (Eça, 2010 and Larsson, 2014). 

This requires at least four solutions to per-
form a curve fit of 

𝑆𝑆𝑖𝑖 = 𝑆𝑆0 + 𝛼𝛼ℎ𝑖𝑖
𝑝𝑝  (25) 

where i is the grid number from 1 to the number 
of grids and ℎ𝑖𝑖is the grid size ratio. 

The convergence condition is determined 
based on the observed order of accuracy, p, such 
that p > 0 indicates monotonic convergence and 
p < 0 indicates monotonic divergence. Oscilla-
tory convergence is defined as being when the 
solution is alternately above and below the exact 
solution. 

Since p is strongly influenced by the amount 
of scatter in the solutions, such that it may be 
larger than the theoretical order of accuracy, 
leading to an underestimate of the error, three 
alternative error estimates are provided, also 
found by curve fitting. 

𝛿𝛿𝑅𝑅𝐸𝐸 = 𝑆𝑆𝑖𝑖 − 𝑆𝑆0 = 𝛼𝛼ℎ𝑖𝑖
𝑝𝑝  (26) 

𝛿𝛿𝑅𝑅𝐸𝐸02 = 𝑆𝑆𝑖𝑖 − 𝑆𝑆0 = 𝛼𝛼02ℎ𝑖𝑖
2 (27) 

𝛿𝛿𝑅𝑅𝐸𝐸12 = 𝑆𝑆𝑖𝑖 − 𝑆𝑆0 = 𝛼𝛼11ℎ𝑖𝑖 + 𝛼𝛼12ℎ𝑖𝑖
2 (28) 
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𝛿𝛿ΔM = (𝑆𝑆𝑖𝑖)max−(𝑆𝑆𝑖𝑖)min

�ℎ𝑛𝑛𝑔𝑔 ℎ1⁄ �−1
  (29) 

The error estimate is chosen based on the ob-
served order of accuracy, p. For 0.5 ≤ p ≤ 2, 
𝛿𝛿𝑅𝑅𝐸𝐸from Eq. (26) is used. For p > 2, 𝛿𝛿𝑅𝑅𝐸𝐸02 from 
Eq. (27) is used, and for p < 0.5 the best fit of 
𝛿𝛿𝑅𝑅𝐸𝐸02 or 𝛿𝛿𝑅𝑅𝐸𝐸12  is chosen. 

The numerical uncertainty is calculated us-
ing a factor of safety approach, as in Eq. (23), 
but the error used and the factor of safety are 
based on p. For 0.5 ≤ p < 2.1, assuming a theo-
retical order of accuracy equal to 2, the factor of 
safety of 1.25 is applied while for all other p a 
factor of safety equal to 3 is used.  

For oscillatory or anomalous convergence 
the uncertainty is based on the data range param-
eter 

𝑈𝑈𝑖𝑖 = 3�𝛿𝛿ΔM�  (30) 

4.6 Estimating Errors and Uncertainties for 
Point Variables 

Determination of the convergence ratio 𝑅𝑅𝑖𝑖 
for point variables can be problematic since so-
lution changes 𝜀𝜀𝑖𝑖,21and 𝜀𝜀𝑖𝑖,32 can both go to zero 
(e.g., in regions where the solution contains an 
inflection point). In this case, the ratio becomes 
ill conditioned. However, the convergence ratio 
can be used in regions where the solution 
changes are both non-zero (e.g., local solution 
maximums or minimums). 

Another approach is to use a global conver-
gence ratio 𝑅𝑅𝑖𝑖 and order of accuracy 𝑝𝑝𝑖𝑖, which 
overcomes ill conditioning, based on the L2 
norm of the solution changes, i.e., 

⟨𝑅𝑅𝑖𝑖⟩ = �𝜀𝜀𝑖𝑖,21�2/�𝜀𝜀𝑖𝑖,32�2 (31) 

⟨𝑝𝑝𝑖𝑖⟩ =
ln��𝜀𝜀𝑖𝑖,32�2/�𝜀𝜀𝑖𝑖,21�2�

ln(𝑟𝑟𝑖𝑖)
 (32) 

where ⟨ ⟩ denotes a profile-averaged quantity 
(with ratio of solution changes based on L2 
norms) and ‖𝜀𝜀‖2 = (∑ 𝜀𝜀𝑘𝑘2𝑆𝑆

𝑘𝑘=1 )1/2 denotes the 
L2 norm of solution change over the 𝑁𝑁 points in 
the region of interest. Caution should be exer-
cised when defining the convergence ratio from 
the ratio of the L2 norm of solution changes be-
cause the oscillatory condition (𝑅𝑅𝑖𝑖 < 1) cannot 
be diagnosed since ⟨𝑅𝑅𝑖𝑖⟩ will always be greater 
than zero. Local values of 𝑅𝑅𝑖𝑖 at solution maxi-
mums or minimums should also be examined to 
confirm the convergence condition based on an 
L2 norm definition. 

For verification of the uncorrected solution 
Eqs. (21) or (23) are used to estimate distribu-
tions of 𝑈𝑈𝑖𝑖 at each point from the local solution 
change 𝜀𝜀𝑖𝑖,21, where 𝑝𝑝𝑖𝑖 is estimated from Eq. 
(32). Similarly, for the corrected solution, ⟨𝑝𝑝𝑖𝑖⟩ is 
used to estimate 𝛿𝛿𝑖𝑖∗ and 𝑈𝑈𝑖𝑖𝐶𝐶 at each point using 
Eqs. (15) or (11) and (22) or (24), respectively. 
An L2 norm of point distributions of errors and 
uncertainties are then used to assess verification 
levels and to judge if validation has been 
achieved globally. 

An alternate approach suggested by Hoeks-
tra et al. (2000) is to transform the spatial profile 
to wave number space and to perform a conver-
gence study on the amplitude distribution of the 
Fourier modes. In principle, this approach 
would remove the problem of ill-conditioning of 
the convergence ratio, 𝑅𝑅𝑖𝑖. 

4.7 Discussion of Fundamental and Practi-
cal Issues 

It should be recognized that implementation 
of verification procedures is not easy and re-
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quire both experience and interpretation of re-
sults, especially for practical applications. How-
ever, their importance cannot be overempha-
sized to ensure fidelity and quality of CFD solu-
tions. 

Fundamental issues include from the outset 
selection of multiple vs. single grid approaches 
for estimating errors and uncertainties. How-
ever, as discussed in Section 7 of 23rd ITTC RC 
Report, the former approach can be used to es-
tablish convergence and is relatively inexpen-
sive to implement and therefore recommended 
at this time. For multiple-grid approaches, im-
portant fundamental issues include appropriate-
ness of power series representation [Eq. (27) of 
Stern et al. (2001)] and its convergence charac-
teristics along with assumptions that 𝑝𝑝𝑖𝑖

(𝑘𝑘) and 
𝑞𝑞𝑖𝑖

(𝑘𝑘) are independent of Δ𝑥𝑥𝑖𝑖. Also, issues con-
cerning definitions and nature of solutions in as-
ymptotic vs. non-asymptotic ranges. 

These fundamental issues are exacerbated 
for practical applications along with additional 
is-sues, including selection of parameter refine-
ment ratio, procedures for generation of multi-
ple systematic grids and solutions, number of 
grids required and variability between grid stud-
ies, selection of appropriate verification proce-
dures, and interpretation of results. 

Selection of the parameter refinement ratio 
was discussed previously in Section 4.1 wherein 
the use of uniform value 𝑟𝑟𝑖𝑖 = √2 was recom-
mended; however, non-uniform and 
larger/smaller values may also be appropriate 
under certain circumstances. Wilson and Stern 
(2002) discuss procedures for generation of 
multiple systematic grids and solutions. Multi-
ple systematic grids are generated using 𝑟𝑟𝑖𝑖 = √2 
and a post-processing tool in which the coarse 
grid is obtained by removing every other point 

from the fine grid and the medium grid is ob-
tained by interpolation. Multiple solutions are 
obtained by first obtaining a solution for the 
coarse grid with a uniform flow initial condition, 
which is then used as an initial condition for ob-
taining a solution on the medium grid, which is 
then used as an initial condition for obtaining a 
solution on the fine grid. This procedure can be 
used to obtain solutions on all three grids in 
about 1/3 the time required to obtain only the 
fine grid solution without this procedure. 

For complex flows with relatively coarse 
grids, solutions may be far from the asymptotic 
range such that some variables are convergent 
while others are oscillatory or even divergent. 
The order of accuracy and therefore correction 
factors and factors of safety may display large 
variability indicating the need for finer grids. 
Clearly, more than 3 grids are required to esti-
mate errors and uncertainties for such cases. Eca 
and Hoekstra (1999, 2000) propose a least 
squares approach to estimate the error by com-
puting the three unknown parameters from RE 
when more than three grids are used and there is 
variability between grid studies. 

Both correction factor and factor of safety 
verification approaches have been presented 
with selection being a user option. Wilson and 
Stern (2002) have shown that the factor of safety 
approach is over conservative when solutions 
are close to the asymptotic range and under con-
servative when solutions are far from the as-
ymptotic range. Nonetheless some users may 
prefer factors of safety over correction factors. 
An alternative is to select the more conservative 
uncertainty from the correction factor and factor 
of safety approaches. For the uncorrected simu-
lation approach the more conservative uncer-
tainty is given as the maximum of Eqs. (21) and 
(23). 
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For the corrected simulation approach, the 

more conservative uncertainty is given as the 
maximum of Eqs. (22) and (24). 

For FS = 1.25, uncorrected uncertainty esti-
mates are based on the factor of safety approach 
when  Ci is close to one (i.e., 0.875 < Ci < 1.125) 
and on the correction factor approach outside 
this range (i.e., |1 − 𝐶𝐶𝑖𝑖| > 0.125). For the cor-
rected approach, uncertainties are based on the 
correction factor approach, when |1 − 𝐶𝐶𝑖𝑖| >
0.25. When using correction factors an im-
portant issue is selection of the best estimate for 
the limiting order of accuracy. Theoretical val-
ues can be used or values based on solutions for 
simplified geometry and conditions, in either 
case, preferably including the effects of 
stretched grids. 

Lastly, analysis and interpretation of results 
is important in assessing variability for order of 
accuracy, levels of verification, and strategies 
for reducing numerical and modelling errors and 
uncertainties; since, as already mentioned, there 
is limited experience and no known solutions for 
practical applications in the asymptotic range 
for guidance. 

4.8 The use of unstructured grids for V&V 

As a preamble to this section it is reminded 
that the verification concerns code verification 
for correct coding of the model. The solution 
verification is aimed at estimating the numerical 
error/uncertainty of a given solution whereas the 
validation process is concerned by the numerical 
model meaning the modelling errors/uncertain-
ties. 

 The CFD error related to the discretiza-
tion error is the difference between the exact so-
lution of the PDE and the exact (round-off-free) 
solution of the algebraic equations used. The 
possible sources of numerical error to consider 

for accurately control the precision of a physical 
model are, Roache (1998): 

(i) Round-off errors: its influence is com-
monly neglected.  

(ii) Iterative error (to solve the cou-
plings/segregated equations and the non-lineari-
ties): its influence is often neglected assuming 
the condition of the residuals “low enough” for 
all the quantities. Eça et al. (2010) showed on 
manufactured solution that the iterative error - 
evaluated by comparing solutions obtained with 
less demanding convergence criteria - must be 
two orders of magnitude smaller than the dis-
cretization error to have a negligible influence. 

(iii) Discretization error (or solution error 
due to incomplete grid convergence): it is com-
puted from a series of systematically refined 
grids from which the exact solution is extrapo-
lated and the uncertainty can be evaluated from 
the computed error. 

For the estimation of the numerical uncer-
tainty a set of geometrically similar grids is re-
quired where grid properties remain the same 
and the refinement ratio be constant in the com-
putational domain. The task of generating a se-
ries of embedded grids by coarsening a fine grid 
or refining a coarse grid is easy with most of 
structured grid generators. 

With an unstructured grid generation pack-
age it is more difficult to guarantee a perfect 
similarity between the grids where the ratios of 
the cell sizes are the same throughout the mesh. 
In practice, this limits the use of refinement 
studies with unstructured grids. 

As an example Figure 1 illustrates hand 
drawing of a series of very simple full hexahe-
dral meshes suited for grid convergence analy-
sis. The location of the boundary between the 
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locally refined regions would not change be-
tween the grids. In this example the lower half 
of the domain will always be refined twice as the 
upper region and the cell size ratio from a coarse 
grid to its next fine grid remains the same 
throughout the computational domain: 2/3 for 
(a)/(b) , 3/4 for (b)/(c) and 4/5 for (c)/(d) . The 
detailed process to reach that requirement is of 
course generator-dependent and the information 
should be precisely documented by the software 
provider. 

As an alternative and when available, adap-
tive grid refinement combined with finite-vol-
ume simulations can be used in a straightfor-
ward way to obtain grid-independent solutions 
by changing only the refinement threshold. The 
limitation is that the cells can only by divided in 

powers of two. This was shown by Wackers et 
al. (2017) for generating series of anisotropic re-
fined meshes to study grid convergence and lo-
cal flow analysis about the KVLCC2 tanker. 

The grid convergence behaviour depends on 
the selected turbulence model. For wall-function 
approach the first cell in the fluid above the 
walls should be located at the same place in all 
grids, in the log-layer region with y+ higher than 
15 for model ship. For full-scale ship and high 
Reynolds number it could be as high as 300. 

In any case, the Richardson extrapolation 
and Least Squares Regression methods, de-
scribed above, should be used to estimate the 
numerical uncertainty. 

 

Figure 1: Example of a series of perfectly nested meshes. From coarse(a) to fine(d). 



 

ITTC – Recommended 
Procedures and Guidelines 

7.5-03 
-01-01 

Page 13 of 15 

Uncertainty Analysis in CFD Verification 
and Validation Methodology and Proce-

dures 

Effective Date 
2021 

Revision 
04 

 

5. VALIDATION PROCEDURES 

5.1 Interpretation of the Results of a Valida-
tion Effort 

First, consider the approach in which the 
simulation numerical error is taken to be sto-
chastic and thus the uncertainty 𝑈𝑈𝑆𝑆𝑆𝑆 is esti-
mated. From a general perspective, if we con-
sider the three variables 𝑈𝑈𝑉𝑉, |𝐸𝐸|, and 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 there 
are six combinations (assuming none of the 
three variables are equal): 

1) |𝐸𝐸| < 𝑈𝑈𝑉𝑉 < 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  

2) |𝐸𝐸| < 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝑈𝑈𝑉𝑉  

3) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < |𝐸𝐸| < 𝑈𝑈𝑉𝑉  

4) 𝑈𝑈𝑉𝑉 < |𝐸𝐸| < 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟  (33) 

5) 𝑈𝑈𝑉𝑉 < 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < |𝐸𝐸| 

6) 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟 < 𝑈𝑈𝑉𝑉 < |𝐸𝐸| 

In cases 1, 2 and 3, |𝐸𝐸| < 𝑈𝑈𝑉𝑉; validation is 
achieved at the 𝑈𝑈𝑉𝑉 level; and the comparison er-
ror is below the noise level, so attempting to es-
timate 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 is not feasible from an uncertainty 
standpoint. In case 1, validation has been 
achieved at a level below 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟, so validation is 
successful from a programmatic standpoint. 

In cases 4, 5 and 6, 𝑈𝑈𝑉𝑉 < |𝐸𝐸|, so the compar-
ison error is above the noise level and using the 
sign and magnitude of 𝐸𝐸 to estimate 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 is fea-
sible from an uncertainty standpoint. If 𝑈𝑈𝑉𝑉 <<
|𝐸𝐸|, then 𝐸𝐸 corresponds to 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 and the error 
from the modelling assumptions can be deter-
mined unambiguously. In case 4, validation is 
successful at the |𝐸𝐸| level from a programmatic 
standpoint. 

Now consider the approach in which the 
simulation numerical error is taken to be deter-
ministic and thus 𝛿𝛿𝑆𝑆𝑆𝑆∗  and the uncertainty 𝑈𝑈𝑉𝑉𝐶𝐶 
are estimated. A similar set of comparisons as 
those in equation (33) can be constructed using 
|𝐸𝐸𝐶𝐶|, 𝑈𝑈𝑉𝑉𝐶𝐶, and 𝑈𝑈𝑟𝑟𝑟𝑟𝑟𝑟𝑟𝑟. Since 𝐸𝐸𝐶𝐶 can be larger or 
smaller than 𝐸𝐸, but 𝑈𝑈𝑉𝑉𝐶𝐶 should always be less 
than 𝑈𝑈𝑉𝑉, the results for a given corrected case 
are not necessarily analogous to those for the 
corresponding uncorrected case. That is, a vari-
able can be validated in the corrected but not in 
the uncorrected case, or vice versa. For cases 4, 
5, and 6 in which 𝑈𝑈𝑉𝑉𝐶𝐶 < |𝐸𝐸𝐶𝐶|, one can argue that 
𝐸𝐸𝐶𝐶 is a better indicator of 𝛿𝛿𝑆𝑆𝑆𝑆𝑆𝑆 than is 𝐸𝐸, assum-
ing that one’s confidence in using the estimate 
𝛿𝛿𝑆𝑆𝑆𝑆∗  is not misplaced. 

5.2 Use of Corrected vs. Uncorrected Simu-
lation Results 

The requirements for correcting the solution 
are that the correction factor be close to one and 
that confidence in solutions exist. Since the var-
iability of the order of accuracy cannot be deter-
mined from solutions on three grids, confidence 
is difficult to establish in this case. As a result, 
caution should be exercised when correcting so-
lutions using information from only three grids. 

If a validation using the corrected approach 
is successful at a set condition, then if one 
chooses to associate that validation uncertainty 
level with the simulation's prediction at a neigh-
bouring condition that prediction must also be 
corrected. That means enough runs are required 
at the new condition to allow estimation of the 
numerical errors and uncertainties. If this is not 
done, then the comparison error 𝐸𝐸 and valida-
tion uncertainty 𝑈𝑈𝑉𝑉 corresponding to the use of 
the uncorrected 𝑆𝑆 and its associated (larger) 𝑈𝑈𝑆𝑆𝑆𝑆 
should be the ones considered in the validation 
with which one wants to associate the prediction 
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at a new condition. (Whether to and how to as-
sociate an uncertainty level at a validated condi-
tion with a prediction at a neighboring condition 
is very much unresolved and is justifiably the 
subject of much debate at this time.) 
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