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Extrapolation for Direct Stability Assessment in Waves 
 
1. PURPOSE OF PROCEDURE 

This procedure provides detailed guidance 
on extrapolation of ship motion numerical sim-
ulation data to estimate probabilities of large roll 
angle and capsizing. Envelope Peak Over 
Threshold (EPOT) method is described for esti-
mation of rate of exceedance of large roll angles.  
Split-time / Motion Perturbation method (MPM) 
is described for estimate rate of capsizing events 
in waves. The procedure also highlights the lim-
itations of these methods.  

Current procedure describes extrapolation 
for a given sea state, speed and heading. 

2. INTRODUCTION 

2.1 Formulation of the Problem 

Complexity of physical phenomena related 
to stability in waves makes numerical simula-
tion the only tool, suitable for detail assessment.  

Extrapolation allows extending existing nu-
merical simulation data beyond observation. For 
example, no exceedances of 40° was not ob-
served over 10 hr of simulation, but there were 
some 30° and 35° exceedances.  Extrapolation 
methods allow estimating an exceedance rate of 
40° by using the existing data rather than run 
more simulations.  Indeed, the extrapolation car-
ries more statistical uncertainty than an estimate 
based on direct direct observation.  Extrapola-
tion is the only technique, capable of estimating 
probability of capsizing, as the latter is too rare 
to observe in realistic conditions. 

The IMO second generation intact stability 
criteria allow use of extrapolation as one of the 
tools for direct stability assessment (paragraph 
3.5.5.4.1 of Annex of SDC 7/WP.6). 

2.2 Theoretical Background 

Extrapolation is based on two theorems on 
extreme values. The first extreme value theorem 
(Fisher-Tippett-Gnedenko) proves that a distri-
bution of the largest value in a sample has a limit 
in the form of a Generalized Extreme Value 
(GEV) distribution.  The second extreme value 
theorem (Pickands-Balkema-de Haan) shows 
that the GEV distribution can be approximated 
by a Generalized Pareto Distribution (GPD) 
above a large-enough threshold, (see, e.g. Coles 
2001). Extrapolation application can be devel-
oped using both GEV and GPD distributions. 

Peak-over-threshold (POT) method is a ge-
neric extrapolation method based on GPD 
(Pickands, 1975).  A key feature of the POT ex-
trapolation is that it can capture the nonlinearity 
of the large amplitude response, such as that 
caused by the changes in the restoring at large 
roll angles and in waves. 

The tail (y>u) of any distribution can be ap-
proximated with a GPD above a sufficiently 
large threshold.  The GPD is defined by three 
numbers – a shape parameter ξ, a scale parame-
ter σ, and threshold value u – and has the fol-
lowing form for y>u: 

pdf(𝑦𝑦) = �
1
𝜎𝜎
�1 + ξ 𝑦𝑦−𝑢𝑢

𝜎𝜎
�
−�1+1ξ� ξ ≠ 0

1
𝜎𝜎

exp �− 𝑦𝑦−𝑢𝑢
𝜎𝜎
� ξ = 0

 (1) 

cdf(𝑦𝑦) = �
1 − �1 + ξ 𝑦𝑦−𝑢𝑢

𝜎𝜎
�
−1/ξ

ξ ≠ 0

1 − exp �− 𝑦𝑦−𝑢𝑢
𝜎𝜎
� ξ = 0

 (2) 
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The objective of the present application is to es-
timate a rate of exceedance λ�(𝑐𝑐)  of a target 
value c>u above the threshold u: 

λ�(𝑐𝑐) = λ�(𝑢𝑢)cdf(𝑐𝑐)�   (3) 

where λ�(𝑢𝑢)  is the rate of upcrossing of the 
threshold u, estimated directly form the time se-
ries.  

For application of a GPD, three parameters 
must be found: shape ξ and scale σ and thresh-
old u.  The scale parameter σ is positive, while 
the shape parameter ξ can be either positive or 
negative.  A negative shape parameter imposes 
a limitation on the expressions in parenthesis of 
equations and formally introduces a right bound 
to the distribution: 

pdf(𝑦𝑦) = 0,    𝑖𝑖𝑖𝑖  𝑦𝑦 > 𝑢𝑢 − 𝜎𝜎
𝜉𝜉

  and 𝜉𝜉 < 0 (4) 

The shape parameter defines the type of tail: 
heavy, exponential, or light, as shown in Fig-
ure 1. 

 

Figure 1 Types of tails per GPD approximation 

The roll restoring arm (𝐺𝐺𝐺𝐺����) curves of most 
ships have a limited range of stability, leading to 
the appearance of an unstable equilibria at the 
angle of vanishing stability, as well a maximum 
value of 𝐺𝐺𝐺𝐺����.  This configuration leads to a heavy 
tail after the maximum of the 𝐺𝐺𝐺𝐺���� curve, which 
switches to a light tail in the immediate vicinity 

of the angle of vanishing stability.  Figure 2 il-
lustrates the configuration, see (Belenky, et al 
2019) for details.  

 

Figure 2 Configuration of a trail of roll peak distri-
bution 

The standard POT method is only applicable 
to independent data points, while the roll mo-
tions of a ship are correlated because of the 
ship’s inertia, correlated wave excitation, and 
“memory” in the hydrodynamic forces.  The ap-
plication of POT, therefore, requires an extrac-
tion of independent points from the time history, 
a process known as “de-clustering.” 

Fitting an envelope to the time history of the 
roll motion, as illustrated in Figure 3, is a con-
venient way to de-cluster the data, as the peaks 
of the envelope of the roll response are suffi-
ciently far from each other to provide the neces-
sary independence.  The use of an envelope to 
de-cluster the roll motion provides the addi-
tional letter in the acronym of the method, so 
POT becomes EPOT – Envelope Peaks Over 
Threshold 

Declustering with the envelope uses a prop-
erty of relatively narrow band spectrum of roll 
motion that is usually correct for beam, follow-
ing and stern-quartering seas. As the roll spec-
trum grows wider in head and oblique seas, the 
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envelope peaks may need to be checked for 
decorrelation as recommended in Section 3 of 
this document. 

 
Figure 3 De-clustering using an envelope 

Estimation of the rate of capsizing requires 
an additional step: calculation of capsizing met-
ric with MPM. The roll rate is perturbed until 
capsizing is observed (see Figure 4).  The differ-
ence between the roll rate at upcrossing and the 
roll rate when capsizing is observed is the met-
ric, as this difference indicates “the distance to 
trouble.”  

 
Figure 4 Motion perturbation for computing the 

capsizing metric 

The capsizing metric is a random number 
showing how likely capsizing is at a given in-
stant of time. It has been demonstrated that the 
tail of the MPM capsizing metric is exponential. 
Algorithm of calculation of the capsizing metric 
and its extrapolation are given in Section 4 of 
this document. 

Finally, relation between the probability of 
and time needs to be mentioned. If there is a re-
quirement for estimation of a probability of ex-
ceedance of a certain roll angle or a capsizing, a 
time of exposure, Te must be specified. Then the 
probability that at least one exceedance (or cap-
sizing) will occur during the time Te can be esti-
mated as: 

𝑃𝑃�(𝑇𝑇𝑒𝑒) = 1 − exp�−λ�(c)𝑇𝑇𝑒𝑒� (5) 

where λ�(c) is an estimate of exceedance or cap-
sizing rate. 

3. ROLL EXCEEDANCE RATE 

3.1 Data Requirement 

The minimum required combined length of 
time histories of roll motion is 40 hours. While 
the bulk of statistical validation was performed 
for 100 hours time histories (Weems et al. 
2019), a successful test for 40 hours is described 
in (Belenky 2020), subsection 5.3.3.  

It may be possible to run the EPOT extrapo-
lation for shorter time. It will require favorable 
comparison of the extrapolation based of shorter 
simulation with the extrapolation using at least 
40 hours of the simulation time history. 

The simulation time histories should include 
sufficient information on nonlinearity of the roll 
motion.  At least 5% of the envelope peaks 
should exceed a half of the angle of maximum 
of the GZ curve in calm water.  Caution has to 
be exercised when applying the method to 
oblique heading, while this requirement may be 
slightly relaxed in stern-quartering seas 
(Belenky et al. 2018). 
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3.2 Data Preparation 

It is convenient to present roll motion time 
history data as a set of independent records. 
Length of each record should be about 30 
minutes.  

Zero-crossing peaks are extracted from each 
record. Absolute values of these peaks φa form 
the envelope as shown in Figure 3. 

Mean value for the envelope is estimated for 
each record. Mean-crossing peaks of envelope 
φe are collected for further processing. 

In the case of oblique seas, when the spec-
trum of roll motion is widening, an additional 
check for the data independence needs to be 
perofrmed. Time is recorded together with each 
peak of roll motion and retained for the mean-
crossing envelope peaks φe. 

Decorrelation time Td (time duration to reach 
independence) is estimated as described in the 
subsection 3.2.3 of the ITTC Procedure 7.5-02-
01-08 (see Figure 5). Estimation of auto-covari-
ance function 𝑅𝑅�  is described in the subsection 
3.2.1 of the above procedure. 

The time between the envelope peaks should 
be more than the decorrelation time Td. If one or 
several peaks of the envelope are located closer 
then Td, the largest among them is used for the 
further processing. 

3.3 Fitting the Distribution 

The tail of the distribution of a large roll an-
gle is supposed to be heavy (see Figure 2). When 
the shape parameter ξ >0 and threshold value 
𝑢𝑢 = 𝜎𝜎 ξ⁄ , the GPD is equivalent to a Pareto dis-
tribution with scale 𝑦𝑦𝑚𝑚 = σ ξ⁄  and shape α =
1 ξ⁄ :  

pdf(𝑦𝑦) = 𝛼𝛼𝑦𝑦𝑚𝑚𝛼𝛼

𝑦𝑦𝛼𝛼+1
  (6) 

The conditional probability of exceedance of 
a target value y associated with dynamic stabil-
ity failure is expressed as: 

P(𝑌𝑌 > 𝑦𝑦|𝑌𝑌 > 𝑢𝑢) = �𝑢𝑢
𝑦𝑦
�
𝛼𝛼

= �𝑦𝑦
𝑢𝑢
�
−1𝜉𝜉 (7) 

Here, the threshold u does not have to be the 
same as in the GPD case.  A method for finding 
the threshold and estimating the shape parame-
ter is proposed in Belenky et al.  (2018), which 
is based on Beirlant, et al.  (2004), Dupuis and 
Victoria-Feser (2006), and Mager (2015). 

To extrapolate with equation (7), the thresh-
old is found from applicability considerations so 
only one parameter needs to be fitted.   

The input data for fitting consists of N inde-
pendent envelope peaks φe (Figure 3). After the 
independence of the peaks has been established, 
there is no need to keep track of the number of 
records and the time when a peak has been rec-
orded.  The method is applied to a sample sorted 
in descending order – a.k.a. order statistics: 

Y = sortdesc(ϕ𝑒𝑒)  (8) 

The Hill estimator provides the shape pa-
rameter ξ − for the case of Pareto ξ > 0: 

𝜉𝜉𝑘𝑘 = 1
𝑘𝑘
∑ log �𝑌𝑌𝑖𝑖

𝑌𝑌𝑘𝑘
�𝑘𝑘

𝑖𝑖=1   (9) 

where the index 𝑘𝑘 refers to the number of upper 
order statistics used in the estimation.  Mager 
(2015) suggests the first index 
𝑘𝑘 = min(40,0.02𝑁𝑁) , while the last (largest) 
value for the index taken as 0.2N. 

The threshold u is found by an index that 
corresponds to a minimum of the mean squared 
prediction error function: 
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Γ�(𝑘𝑘) = 1
𝜉𝜉�𝑘𝑘
2∙𝑘𝑘
∑

 �log�
𝑌𝑌𝑖𝑖−1
𝑌𝑌𝑘𝑘−1

�+𝜉𝜉�𝑘𝑘 log�
𝑖𝑖

𝑘𝑘+1��
2

�∑ 𝑗𝑗−2𝑘𝑘
𝑗𝑗=𝑖𝑖 �

𝑘𝑘
𝑖𝑖=1 +

             2
𝑘𝑘2
∑

�log� 𝑖𝑖
𝑘𝑘+1��

2

�∑ 𝑗𝑗−2𝑘𝑘
𝑗𝑗=𝑖𝑖 �

𝑘𝑘
𝑖𝑖=1 − 1 (10) 

Once the index k corresponding to a mini-
mum of Γ�, is found, the threshold is set as: 

𝑢𝑢 = 𝑌𝑌𝑘𝑘  (11) 

The extrapolated estimate of the exceedance 
rate of target value c can be computed as: 

λ�(𝑐𝑐) = λ�(𝑢𝑢) �𝑐𝑐
𝑢𝑢
�
−1 𝜉𝜉�⁄

  (12) 

where λ�(𝑢𝑢) is the rate of upcrossing of threshold 
u, estimated as:  

λ�(𝑢𝑢) = 𝑘𝑘
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡

  (13) 

where Ttot is the total time of all the records 
available. 

3.4 Assessment of Uncertainty 

The uncertainty of extrapolation coming 
from finite volume of the data sample can be 
evaluated with confidence interval, containing 
the true value with confidence probability β. 

The confidence interval for the extrapolated 
value is computed assuming a normal distribu-
tion for the estimate of the shape parameter 𝜉𝜉.  
Its variance estimate is expressed as: 

𝑉𝑉𝑉𝑉𝑉𝑉� (𝜉𝜉) = 𝜉𝜉�2

𝑘𝑘
  (14) 

The boundaries of the confidence interval of 
the estimate are: 

𝜉𝜉𝑢𝑢𝑢𝑢,𝑙𝑙𝑙𝑙𝑙𝑙 = 𝜉𝜉 ± 𝐾𝐾𝛽𝛽�𝑉𝑉𝑉𝑉𝑉𝑉� (𝜉𝜉) (15) 

where Kβ  is a half of a non-dimensional confi-
dence interval computed as a normal quantile of 
0.5(1+β).  For β=0.95, Kβ =1.96. 

The number of upcrossings of the threshold 
k has a binomial distribution with the estimate 
of a parameter 

�̂�𝑝 = 𝑘𝑘 ∆𝑡𝑡
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡

  (16) 

where ∆t is time increment used in the simula-
tion. The confidence interval for λ�(𝑢𝑢) is com-
puted using normal approximation for binomial 
distribution. The variance of the number of up-
crossings k is estimated as: 

𝑉𝑉�𝑘𝑘 = ∆𝑡𝑡
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡

�̂�𝑝(1 − �̂�𝑝)  (17) 

Then the confidence interval for λ�(𝑢𝑢)  is 
coumputed as: 

λ�𝑢𝑢𝑢𝑢,𝑙𝑙𝑙𝑙𝑙𝑙(𝑢𝑢) = 𝑁𝑁𝑎𝑎𝑎𝑎±𝐾𝐾𝛽𝛽�𝑉𝑉�𝑘𝑘
𝑇𝑇𝑡𝑡𝑡𝑡𝑡𝑡

 (18) 

Boundaries for the extrapolated value are 
computed through the lower and upper bounda-
ries of the upcrossing rate estimate λ�𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑢𝑢(𝑢𝑢) 
and the shape parameter estimate ξ̂𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑢𝑢: 

�
λ�𝑙𝑙𝑙𝑙𝑙𝑙(𝑐𝑐) = λ�𝑙𝑙𝑙𝑙𝑙𝑙(𝑢𝑢) �𝑐𝑐

𝑢𝑢
�
−1 𝜉𝜉�𝑙𝑙𝑡𝑡𝑙𝑙⁄

λ�𝑢𝑢𝑢𝑢(𝑐𝑐) = λ�𝑢𝑢𝑢𝑢(𝑢𝑢) �𝑐𝑐
𝑢𝑢
�
−1 𝜉𝜉�𝑢𝑢𝑢𝑢⁄

 (19) 

Equations (19) contain a product of the 
boundaries of two estimates.  If the desired con-
fidence probability for the entire extrapolated 
estimate λ�(𝑐𝑐) is to be β = 0.95 then the confi-
dence probabilities for each estimate λ�(𝑢𝑢) and ξ̂ 
must be set as: 

𝛽𝛽1 = �𝛽𝛽 = √0.95 = 0.975 (20) 
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In order to account for the difference in the 
confidence probability, Kβ is set to 2.236 in 
equations (15) and (18). 

4. CAPSIZING RATE 

4.1 General 

Primary application area for the Split-Time / 
Motion Perturbation Method (MPM) is estima-
tion of probability of capsizing.  In general, the 
split-time method is intended for estimating the 
probability of complex and rare physical phe-
nomena in which the physics of the problem 
changes with the extreme response, such as that 
caused by capsizing in dead ship conditions or 
pure loss of stability in stern quartering / follow-
ing seas. 

4.2 Data Requirements 

The minimum required combined length of 
time histories of roll motion is 40 hours. While 
the bulk of statistical validation was performed 
for 100 hours time histories (Belenky et al. 
2018), a successful test for 40 hours is described 
in (Belenky 2020), subsection 5.3.4.  

It may be possible to run the split-time 
/MPM method using shorter simulation time. It 
will require favorable comparison of the extrap-
olation based of shorter simulation with the ex-
trapolation using at least 40 hours of the simula-
tion time history. 

There is no requirement on how large roll 
motions should be.  The treatment of nonlinear-
ity is included in computation of the capsizing 
metric (or the metric of capsizing likelihood). 

4.3 Data Preparation 

The metric of capsizing likelihood is com-
puted at the instant of upcrossing of an interme-
diate roll threshold a.  

The choice of the intermediate threshold a is 
done based on consideration of computational 
efficiency.  If the threshold is set too high, there 
will be too few upcrossings available for the 
metric computations and additional simulation 
time may be required.  If the threshold is set too 
low, there will be many upcrossings leading to 
dependent metric values.  Thus, many of these 
values will be rejected during the de-clustering 
procedure, which will decrease computational 
efficiency.  7-10 upcrossings per an independent 
record of 30 minutes long was found to be ac-
ceptable. 

The evaluation of the metric consists 
from the following steps. 

1. Compute the time instant of up crossing tUi 
and the roll rate at the instant of upcrossing 
�̇�𝜙𝑈𝑈𝑖𝑖  using linear interpolation between the 
roll angle and rate data points, respectively.  
Similarly compute values of heave, pitch and 
their derivatives at the instant of upcrossing. 

2. Compute perturbed solution for 𝜙𝜙0 = 𝑉𝑉 and 
�̇�𝜙0 = �̇�𝜙𝑈𝑈𝑖𝑖 + Δ�̇�𝜙, while using the values for 
pitch and heave, computed at the previous 
step, as the initial conditions for pitch and 
heave equations respectively.  If capsizing is 
not observed, the perturbed solution con-
verges with the unperturbed solution (see 
Figure 4), the convergence time Tcnv is de-
fined when the difference between perturbed 
and unperturbed solution does not exceed a 
given value for a given number of points. 

3. The next perturbation is carried out for �̇�𝜙0 =
�̇�𝜙𝑈𝑈𝑖𝑖 + 2Δ�̇�𝜙 , keeping the rest of the initial 
conditions the same.  The procedure is re-
peated for 3Δ�̇�𝜙, 4Δ�̇�𝜙…, until the capsizing is 



 

ITTC – Recommended 
Procedures and Guidelines 

7.5 – 02 
07 – 04.6 

Page 9 of  14 

Extrapolation for Direct Stability 
Assessment in Waves 

Effective Date 
2021 

Revision 
00 

 
 

observed as shown in Figure 4 for �̇�𝜙0 =
�̇�𝜙𝑈𝑈𝑖𝑖 + 𝑚𝑚Δ�̇�𝜙, where m is the number of itera-
tions. 

4. Once capsizing is observed for �̇�𝜙0 = �̇�𝜙𝑈𝑈𝑖𝑖 +
𝑚𝑚Δ�̇�𝜙 , the critical roll rate is computed as 
�̇�𝜙𝐶𝐶𝑖𝑖 = �̇�𝜙𝑈𝑈𝑖𝑖 + (𝑚𝑚 − 1)Δ�̇�𝜙, convergence time 
Tcnv for the penultimate iteration is recorded 
for further use in the declustering procedure. 

5. Metric for the i-th upcrossing is computed 
as: 

𝑦𝑦𝑖𝑖 = 1 + �̇�𝜙𝑈𝑈𝑖𝑖 − �̇�𝜙𝐶𝐶𝑖𝑖 ;     𝑖𝑖 = 1, … ,𝑁𝑁𝑈𝑈 (21) 

where ϕ̇𝐶𝐶𝑖𝑖 is the critical roll rate calculated for 
the i-th upcrossing, and  ϕ̇𝑈𝑈𝑖𝑖 is the roll rate ob-
served at the i-th upcrossing, NU number of ob-
served upcrossings.   

The up crossings of a level usually comes in 
groups, the metric values are clustered, meaning 
that the metric values within a same cluster may 
be dependent. A de-clustering procedure is used 
to ensure independence of the collected metric 
values.  The cluster is defined as a group of the 
metric values yi, corresponding to up crossings 
that are closer than respective convergence time 
durations {𝑦𝑦𝑖𝑖}𝑖𝑖=𝑏𝑏𝑗𝑗

𝑖𝑖=𝑒𝑒𝑗𝑗 , where bj and ej are indexes of 
the beginning and end of j-th cluster. The de-
clustered values are determined as maximum 
value within each cluster: 

𝑥𝑥𝑗𝑗 = max �{𝑦𝑦𝑖𝑖}𝑖𝑖=𝑏𝑏𝑗𝑗
𝑖𝑖=𝑒𝑒𝑗𝑗� , 𝑗𝑗 = 1. . .𝑁𝑁 (22) 

4.4 Fitting the Distribution 

As demonstrated in Belenky et al (2018), the 
independent large values of the metric (21) can 
be approximated with an exponential tail. Fit-
ting a tail involves finding a threshold, after 
which the exponential approximation is applica-
ble.  Two options are described below: one is the 
prediction error criterion (Mager 2015) and the 

other is the goodness-of-fit test (Stephens, 
1974). 

To use the prediction error technique, the 
data needs to be sorted in descending order.  A 
mean squares prediction error function is de-
fined as (Mager 2015): 

Γ�(𝑘𝑘) = 
1
𝛾𝛾�𝑘𝑘
2 ∑ �𝑘𝑘+1

𝑖𝑖 − 1�
−1

 �𝑥𝑥𝑖𝑖,𝑘𝑘 + 𝛾𝛾�𝑘𝑘� log( 𝑖𝑖
𝑘𝑘+1)�

2𝑘𝑘
𝑖𝑖=1  

+ 2
𝑘𝑘
∑ �𝑘𝑘+1

𝑖𝑖
− 1�

−1
�log � 𝑖𝑖

𝑘𝑘+1
��

2
𝑘𝑘
𝑖𝑖=1 − 1, (23) 

where k is an index corresponding to a candidate 
threshold, while 𝛾𝛾�𝑘𝑘  is exponential distribution 
parameter estimated on the subset of the data 
points indexes from 1 to k. 

𝑘𝑘 ∈[min(40,0.02𝑁𝑁); 0.2𝑁𝑁] (24) 

𝛾𝛾�𝑘𝑘 = 1
𝑘𝑘
∑ �𝑥𝑥𝑗𝑗 − 𝑥𝑥𝑘𝑘�𝑘𝑘
𝑗𝑗=1   (25) 

The resulting threshold u (not to be confused 
with intermediate threshold a, used earlier) is 
found where the mean squares prediction error 
function experiences a global minimum. 

To use the goodness-of-fit technique, the 
data needs to be sorted in ascending order.  The 
candidate threshold u is searched for the data 
point indexes k within the following range: 

𝑘𝑘 ∈[0.7𝑁𝑁;𝑁𝑁 − 10]  (26) 

For a candidate threshold u, there are n 
points available for fitting ranging from 10 to 
0.3N.  The data points vj above the candidate 
threshold are u defined as: 

𝑣𝑣𝑗𝑗 = 𝑥𝑥𝑗𝑗 − 𝑢𝑢;   𝑗𝑗 = 1, … ,𝑛𝑛 (27) 

The exponential distribution parameter, 𝛾𝛾�𝑢𝑢, 
estimated for the candidate threshold u 
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𝛾𝛾�𝑢𝑢 = 1

𝑛𝑛
∑ 𝑣𝑣𝑗𝑗𝑛𝑛
𝑗𝑗=1   (28) 

The test statistic for the null hypothesis is de-
fined as: 

𝐷𝐷∗ = �𝐷𝐷 −  0.2
𝑛𝑛
� �√𝑛𝑛 + 0.26 + 0.5

√𝑛𝑛
� (29) 

where 𝐷𝐷 = max{𝐷𝐷+,𝐷𝐷−} with: 

𝐷𝐷+ = max
𝑗𝑗=1,…,𝑛𝑛

�𝑗𝑗
𝑛𝑛
− 𝑧𝑧𝑗𝑗�  (30) 

𝐷𝐷− = max
𝑗𝑗=1,…,𝑛𝑛

�𝑧𝑧𝑗𝑗 −
𝑗𝑗−1
𝑛𝑛
�  (31) 

𝑧𝑧𝑗𝑗 = 1 − 𝑒𝑒−
𝑣𝑣𝑗𝑗
𝛾𝛾�𝑢𝑢  (32) 

The critical values for the test statistic 𝐷𝐷∗ 
were tabulated by Stephens (1974) and placed in 
Table 1. For a range of candidate thresholds, the 
test statistic 𝐷𝐷∗ could then be computed and a 𝑝𝑝-
value of the test for the exponential distribution 
be calculated. Since Stephens (1974) tabulated 
critical values for only a few significance levels, 
the 𝑝𝑝 -value can be taken as the significance 
level whose critical value is the largest but still 
smaller than 𝐷𝐷∗.   

Table 1 Critical Values for Goodness-of Fit Method 

Level of sig-
nificance, p 0.01 0.02

5 0.05 0.10 

D* 1.30
8 

1.19
0 1.094 0.990 

Level of sig-
nificance, p 0.15 0.20 0.25 0.30 

D* 0.92
6 

0.88
0 0.835 0.795 

Level of sig-
nificance, p 0.35 0.40 0.45 0.50 

D* 0.76
6 

0.73
6 0.710 0.685 

A final threshold can be selected as the larg-
est u above which the thresholds have their as-
sociated 𝑝𝑝-value larger than certain significance 

level.  A significance level of 5% seems reason-
able but it has been found that for the extrapola-
tion to work, it should be larger, say 10% or 
above. 

The extrapolated estimate of the capsizing 
rate is computed as 

λ� = λ�(𝑢𝑢)exp �− 1−𝑢𝑢
𝛾𝛾�
�  (33) 

where the estimate of the parameter 𝛾𝛾�  corre-
sponds to the chosen threshold u, λ�(𝑢𝑢) is the 
rate of upcrossing of threshold u, estimated with 
equation (13). 

4.5 Assessment of Uncertainty 

The uncertainty of the estimation of the cap-
sizing rate is driven by the finite volume of the 
data available for extrapolation. The confidence 
interval for the extrapolated value is computed 
assuming a normal distribution for the estimate 
of the parameter 𝛾𝛾�.  Its variance estimate is ex-
pressed as: 

𝑉𝑉𝑉𝑉𝑉𝑉� (𝛾𝛾�) = 𝑉𝑉𝑉𝑉𝑉𝑉� (𝑥𝑥−𝑢𝑢)
𝑛𝑛

  (34) 

where 𝑉𝑉𝑉𝑉𝑉𝑉� (𝑥𝑥 − 𝑢𝑢) is the variance, estimated for 
the points above the threshold u while n is the 
volume of sample above the threshold u. The 
boundaries of the confidence interval of the es-
timate are: 

𝛾𝛾�𝑢𝑢𝑢𝑢,𝑙𝑙𝑙𝑙𝑙𝑙 = 𝛾𝛾� ± 𝐾𝐾𝛽𝛽�𝑉𝑉𝑉𝑉𝑉𝑉� (𝛾𝛾�) (35) 

where Kβ  is a half of a non-dimensional confi-
dence interval computed as a normal quantile of 
0.5(1+β2), where β2 is the confidence probabil-
ity for the parameter, computed as  β2 = �β , 
while is the confidence interval accepted for the 
entire extrapolated estimate.   
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Boundaries for the extrapolated estimate are 
computed through the lower and upper bounda-
ries of the upcrossing rate estimate λ�𝑙𝑙𝑙𝑙𝑙𝑙,𝑢𝑢𝑢𝑢(𝑢𝑢), 
(see equation 18) and the parameter estimate 
𝛾𝛾�𝑢𝑢𝑢𝑢,𝑙𝑙𝑙𝑙𝑙𝑙: 

�
λ�𝑙𝑙𝑙𝑙𝑙𝑙(𝑐𝑐) = λ�𝑙𝑙𝑙𝑙𝑙𝑙(𝑢𝑢)exp �− 1−𝑢𝑢

𝛾𝛾�𝑙𝑙𝑡𝑡𝑙𝑙
�

λ�𝑢𝑢𝑢𝑢(𝑐𝑐) = λ�𝑢𝑢𝑢𝑢(𝑢𝑢)exp �− 1−𝑢𝑢
𝛾𝛾�𝑢𝑢𝑢𝑢

�
 (36) 

Similar to equations (19), the equation (36) 
contain a product of the boundaries of two esti-
mates.  If the desired confidence probability for 
the entire extrapolated estimate λ�(𝑐𝑐)  is to be 
β = 0.95 then the confidence probabilities for 
each estimate λ�(𝑢𝑢) and 𝛾𝛾� must be set as shown 
in equation (20) 

5. LIST OF SYMBOLS 
c Target for extrapolation 
cdf cumulative density function 
N Total number of independent data points 
𝑃𝑃�(𝑇𝑇𝑒𝑒) Estimate of probability of at least one ex-

ceedance or capsizing occurs during the 
time of exposure 

pdf probability density function 
Td Time of decorrelation, s 
Te Time of exposure, s 
Ttot Total time of available simulation, s 
u Threshold value 
Var() Variance operator 
β Confidence probability 
γ Parameter of exponential distribution 
λ(c) Exceedance or capsizing rate s-1 
λ(u) Exceedance of a threshold u, s-1 
ξ Shape parameter of Generalized Pareto 

distribution or Pareto distribution 
σ Scale parameter of Generalized Pareto 

Distribution 
φ Roll angle, deg 

φa Roll amplitude (absolute values of roll 
peaks), deg 

ϕ̇ Roll rate, rad/s 
�  Estimate (“hat” above a symbol) 
𝑢𝑢𝑢𝑢 Upper boundary of confidence interval 
𝑙𝑙𝑙𝑙𝑙𝑙 Lower boundary of confidence interval 
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 CALCULATION EXAMPLE 

A.1. Input Data 

Both extrapolation procedures are demon-
strating using ONR (US Office of Naval Re-
search) tumblehome topside configuration 
(Bishop, et al 2005).  Principle dimensions and 
other general input data are placed to Table A1, 
while the lines are shown in Fig. A1 

Fast volume-based simulation tool (Weems, 
et al 2018) was used to generate sample data. 
Simulation included 3 degrees of freedom: 
heave-roll-pitch, with body-nonlinear formula-
tion for hydrostatic and Froude-Krylov forces, 
while appropriate coefficients were used for the 
rest of forces. Wave environment was repre-
sented by long-crested irregular waves gener-
ated with Bretscheider spectrum recommended 
by ITTC 1978. 

Table A1 Principle Input Data 

Length BP, m 154 
Breadth molded, m 18 
Draft amidships, m 5.5 
KG , m 7.5 
Displacement, MT 8675.6 
GM ,m 2.2 
Speed, kt 6 
Heading, deg 45 
Significant wave height, m 9 
Total volume of sample, hr 40 
Duration pf each record, hr 0.5 

 

 

Figure A1 ONR Tumblehome Topside Configura-
tion 
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A.2. Results of EPOT Extrapolation 

Example calculation were carried out for ir-
regular waves with and modal period of 15 s.  
Sample record is shown in Figure A2. Maxi-
mum observed angle over 40 hours of simula-
tion was 28.1°.  

 

Figure A2 Sample Record 

There were total of 22318 zero-crossing 
peaks in 40 records, 2294 peaks were found to 
be independent, using envelope-base de-cluster-
ing procedure. The first index to search thresh-
old (𝑘𝑘 = min(40,0.02𝑁𝑁) ) were taken as 40, 
while the last index (0.2N) equals 459, leave 420 
potential thresholds. The mean squared predic-
tion error function shown in Figure A6. 

 

Figure A3 Mean squares prediction error function 

The index, corresponding to the minimum 
error value was found to be 347, corresponding 
to the angle of u=15.68 deg. Number of point 
available for fitting the tail is k=112.  

The shape parameters of Pareto distribution 
was estimated as 𝜉𝜉 = 0.121 using equation (9). 
Rate of upcrossing through the level u is esti-
mated as λ�(𝑢𝑢) = 7.91 ∙ 10−4 𝑠𝑠−1 with equation 
(13). The final results - rate of exceeding of 50 
degrees is λ�(𝑐𝑐 = 50) = 5.46 ∙ 10−8 𝑠𝑠−1. 

Assessment of uncertainty requires calcula-
tion of variances of the shape parameters of Pa-
reto distribution using formula (14): 𝑉𝑉𝑉𝑉𝑉𝑉� �𝜉𝜉� =
1.309 ∙ 10−4 and variance of the the number of 
upcrossing using formula (17) 𝑉𝑉�𝑘𝑘 = 111.956 . 
The final result is shown in Figure A4. 

 

 

Figure A4 Estimate for Rate of Upcrossing 

A.3. Results of Split-Time/ MPM Extrapola-
tion 

Example calculation were carried out for ir-
regular waves with the modal period of 14s. The 
maximum observed roll angle over 40 hours of 
simulation was 39.4 degrees.  The intermediate 
threshold was chosen at 12 degrees, resulting in 
527 upcrossing over 80 records.  The de-cluster-
ing procedure produced 321 independent values 
of the metric, ranging from 0.344 rad/s to 0.767 
rad/s. 
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For the choice of the threshold with the Pre-
diction Error Criterion, the mean squares predic-
tion error function is shown in Figure A5.  Other 
intermediate numerical results are given in Ta-
ble A2 

The final extrapolation results for both meth-
ods of fitting is shown in Figure A6. 

 

Figure A5 Estimate for Rate of Upcrossing 

Table A2 Intermediate Results of Fitting Exponen-
tial Tail 

Method Predic-
tion Er-
ror Func-
tion 

Goodness-of-Fit Test 
p=0.1 p=0.2 

Threshold, u 0.616 0.515 0.518 
Available points  13 49 45 
Parameter 𝛾𝛾� rad/s 0.058 0.062 0.064 
Variance of 𝛾𝛾� (rad/s)2 1.78 10-4 9.41 10-5 9.41 10-5 
𝑃𝑃�(𝑦𝑦 > 1) 1.38 10-3 3.86 10-4 5.13 10-4 
Capsizing rate λ�, s-1 1.27 10-7 1.34 10-7 1.63 10-7 

 

 

Table A2 Intermediate Results of Fitting Exponen-
tial Tail (Cont.) 

Method Goodness-of-Fit Test 
p=0.3 p=0.4 p=0.5 

Threshold, u 0.518 0.604 0.604 
Available points  45 13 13 
Parameter 𝛾𝛾� rad/s 0.064 0.07 0.07 
Variance of 𝛾𝛾� (rad/s)2 1.04 10-4 1.93 10-4 1.93 10-4 
𝑃𝑃�(𝑦𝑦 > 1) 5.13 10-4 3.48 10-4 3.48 10-4 
Capsizing rate λ�, s-1 1.63 10-7 3.19 10-7 3.19 10-7 

 

 
Figure A6 Estimate for Rate of Capsizing 
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