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Laboratory Modelling of Multidirectional Irregular Wave Spectra 

 
1. PURPOSE OF GUIDELINE 

The purpose of this recommended guideline 
is to ensure that laboratory generated directional 
waves are modelled and documented according 
to proper and well defined methods. A practical 
implementation and use within naval architec-
ture and ocean engineering applications is es-
sential.  

It shall also point out particular challenges, 
limitations and uncertainties inherent in labora-
tory directional spectrum estimation. Attention 
is mainly focused at the directional characteris-
tics. Some considerations about the multi-modal 
power spectra are provided only when they are 
directly relevant for the directional modelling.  

An overview of the most commonly used 
principles, methods and definitions is given in 
this procedure, together with some guidelines. It 
is not the intention to provide particular recipes 
for all steps in the wave generation and analysis, 
for which more details can be found in e.g. 
IAHR (1997).  

2. SCOPE 

2.1 Use of directional spectra 

Real ocean waves are directional (short-
crested). However, for practical and simplicity 
reasons, unidirectional waves have in the past 
traditionally been modelled in most applications 
within naval architecture and offshore engineer-
ing. Both numerically and experimentally, the 
generation, analysis and documentation of di-
rectional spectra are more complex. Also, the in-
terpretation of model response results may be 

more challenging. Still, a significant develop-
ment of experimental facilities and methods has 
taken place since the 1980’s, especially within 
hydraulic and coastal engineering, and the use is 
expected to continue to increase. This is also 
supported by the fact that more ocean field data 
are becoming available. The goal might be not 
only to reproduce exact recorded wave data, but 
also to check the models under complex waves 
(ULS, fatigue).  

The significance of using directional wave 
modelling, and which characteristics are essen-
tial, will depend on the actual application. The 
normal assumption is that for simple floating 
bodies, wave loads are generally reduced, while 
for compliant systems (due to its high nonline-
arity), loads may sometimes also increase. The 
primary directional parameters are considered in 
many cases to include simply the mean direc-
tion, the spreading, and information on possible 
multi-modal  peaks and on frequency dependent 
(or bimodal) spreading. Further details may 
sometimes be relevant, and plots of estimated 
spectra often provide helpful information. More 
detailed experimental and numerical investiga-
tions are needed for quantifying these general 
considerations for a broad range of applications.  

In many cases, unidirectional wave model-
ling will normally be a first step, since this is 
easier and “cleaner” to compare directly to nu-
merical and theoretical models. Thus there is 
also a challenge to develop numerical wave and 
structural response models taking properly into 
account directional effects, which will be con-
sistent in the comparison to experiments. 
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2.2 The inherent statistical nature 

One of the basic challenges connected with 
directional spectrum modelling is that, in most 
applications, the characteristic directional pa-
rameters are of a statistical nature, and must be 
interpreted as such. Thus a “unique” sample es-
timate is difficult to define. Estimated results are 
inherently subject to statistical errors on both 
frequency and direction (e.g. Olangon et al. 
2013).  

Frequency errors are related to the effect of 
windowing and non-stationarity. The effect of 
windowing can be estimated to some extent by 
convolution if the characteristics of the window 
are known. The effect of non-stationarity can be 
relevant in some cases. Both the mean frequency 
and significant wave amplitude may change dur-
ing the record. For wind sea, the sweeping of the 
mean frequency is relatively small compared to 
the frequency bandwidth. For a swell it could be 
different and it depends on the duration of the 
record. For the direction, errors may arise when 
fitting the data with given spreading functions, 
which can be an ill-conditioned process. 

There are basic and practical limitations in 
what resolution is in fact possible to document 
from a test. Certain characteristics of the esti-
mates will then also be coloured by the method 
actually used, which is therefore important to 
document. This should be kept in mind, and the 
quantification of such errors and limitations is 
also a challenge. 

3. MAIN DEFINITIONS 

Directional frequency spectrum: 

The combined frequency/directional spec-
trum can be written as: 

S(f,θ) = D(f, θ) S(f) 

Here D(f,θ) is the normalized directional 
spreading distribution, and S(f) is the scalar 
power spectrum including all directions. There 
is experimental evidence confirming the exist-
ence of bimodal directional spreading (Young et 
al., 1995; Ewans, 1998). However, it has been 
recently observed that the frequency dependent 
directional spread naturally develop from a ini-
tial state of no frequency dependence 
(Simanesew et al. 2016). Hence, for laboratory 
tests, it is not necessary to generate a frequency 
dependent directional spread since it will natu-
rally develop, provided the wave field has been 
allowed to develop over a sufficiently long dis-
tance that a steady frequency dependence has 
been established.  

Another reason why the frequency depend-
ent directional spread is not considered in tests 
is because the bimodal structure usually devel-
ops beyond f/fp =2 where the spectral energy is 
small compared to the peak region and thus the 
existence of bimodal spreading will have a little 
impact for engineering applications (Young et 
al. 1995). 

If the spreading is independent of the fre-
quency f, the spreading distribution is simplified 
as D(θ ). The function D(θ ) is often expressed 
as a truncated Fourier series (Longuet-Higgins 
et al., 1963): 

𝐷𝐷(𝜃𝜃) =
1
𝜋𝜋 �

1
2

+ ∑
𝑚𝑚=1

2
[𝑎𝑎𝑚𝑚cos(𝑚𝑚𝜃𝜃) + 𝑏𝑏𝑚𝑚sin(𝑚𝑚𝜃𝜃)]� 

where am and bm are the Fourier coefficients.  

In the following, this shall be assumed un-
less otherwise is noted. For models of the scalar 
power spectrum S(f) we refer to the description 
in ITTC (2002). 

Circular moments: 
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𝐶𝐶𝑚𝑚 ≡ � 𝐷𝐷(𝜃𝜃)exp(−𝑗𝑗𝑚𝑚𝜃𝜃) 𝑑𝑑𝜃𝜃
2𝜋𝜋

0
       ≡ 𝑎𝑎𝑚𝑚 − 𝑗𝑗𝑏𝑏𝑚𝑚 ≡ |𝐶𝐶𝑚𝑚|exp(−𝑗𝑗𝜑𝜑𝑚𝑚)

 

Here Cm  is the complex moment of order m, 
and ϕm is its phase. Note that C0  = 1. 

Mean direction θ0:  

Two definitions are in common use: 
𝜃𝜃01 ≡ arg(𝐶𝐶1) ≡ arctan(𝑏𝑏1/𝑎𝑎1) ≡ 𝜙𝜙1
𝜃𝜃02 ≡ 1

2� arg(𝐶𝐶2) ≡ 1
2� arctan(𝑏𝑏2/𝑎𝑎2) ≡ 1

2� 𝜙𝜙2
 

(notice the unit is radians). For symmetric dis-
tributions, these are identical. The second defi-
nition is less influenced by contributions outside 
𝜋𝜋 2 > 𝜃𝜃02 > −𝜋𝜋 2⁄⁄ .. 

Spreading parameter σθ:  

For the standard deviation, two definitions 
are commonly in use: 

𝜎𝜎𝜃𝜃1 = [2 (1 −   |𝐶𝐶1| ) ]1 2�  

𝜎𝜎𝜃𝜃2 = 1
2� [2 (1 −   |𝐶𝐶2| ) ]1 2�  

The second definition is less influenced by 
contributions outside 𝜋𝜋 2 > 𝜃𝜃02 > −𝜋𝜋 2⁄⁄ . 
There are also other, model-dependent spread-
ing parameters, defined in connection with ac-
tual models in Chapter 4.  

Directional parameters (from IAHR)  

A detailed list with additional directional pa-
rameters is provided in IAHR (1997) and it is 
copied here below for convenience: 

• k [rad/s]: Wave number vector, with |k|=k 
being wave number, such that 𝑘𝑘𝑥𝑥 = 𝒌𝒌 cos 𝜃𝜃 
and 𝑘𝑘𝑦𝑦 = 𝒌𝒌 sin𝜃𝜃 

• θ [rad]: Direction of wave propagation (de-
scribing direction of k) counter-clockwise 
positive 

• α [rad]: Wave direction, expressing where 
the waves are coming from. The angle is be-
tween true North and the direction where the 
waves are coming. Clockwise is positive in 
this definition 

• SX(f,θ) [m2/Hz rad]: Directional spectral 
density where the subscript X is: I for inci-
dent spectrum, R for reflected, T for total or 
omitted is no confusion is possible 

• SX(k,θ) [(m2/(rad/m))/rad]: Directional wave 
number spectral density, where X is deter-
mined as above 

• CR(f,θ*) [ ]: Directional reflection coeffi-
cient defined as: 

𝐶𝐶𝑅𝑅(𝑓𝑓,𝜃𝜃∗) = �
𝑆𝑆𝑅𝑅(𝑓𝑓,𝜃𝜃𝑅𝑅)
𝑆𝑆𝐼𝐼(𝑓𝑓,𝜃𝜃𝐼𝐼)

 

where 𝜃𝜃𝐼𝐼 = 𝜋𝜋 + 𝜃𝜃𝑆𝑆 − 𝜃𝜃∗ , and  𝜃𝜃𝑅𝑅 = 𝜋𝜋 + 𝜃𝜃𝑆𝑆 −
𝜃𝜃∗, where θ * is the deviation from the head on 
direction. 

• DX(f,θ) [rad-1]: Directional spreading func-
tion defined as 𝑆𝑆𝑋𝑋(𝑓𝑓, θ) = 𝑆𝑆𝑋𝑋(𝑓𝑓)𝐷𝐷𝑋𝑋(𝑓𝑓, θ) 
where 

� 𝐷𝐷𝑋𝑋(𝑓𝑓,𝜃𝜃)𝑑𝑑𝜃𝜃 = 1
2𝜋𝜋

0
 

• Rη(r,τ) [ ]: Autocorrelation function in space 
and time, i.e. the normalized autocovariance 
in space and time domain 

• Rη(r) [ ]: Autocorrelation function in space, 
i.e. the normalized in space domain 

• SηLB(f,θ) [m2/(Hz rad)]: Directional group 
bound low frequency spectral density 

• SηHB(f,θ) [m2/(Hz rad)]: Directional group 
bound high frequency spectral density 

• SX(k) [m2/(rad/m)2]: Wave number vector 
spectral density, where X is I, R or T 
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• θs [rad]: Seaward direction of the normal to 

a reflecting structure 
• θm,X [rad]: Mean wave direction as a function 

of frequency.  

Def. 1: 𝜃𝜃𝑚𝑚,𝑋𝑋 = arg (𝑐𝑐1) where  

𝑎𝑎𝑛𝑛 = � 𝐷𝐷𝑋𝑋(𝑓𝑓,𝜃𝜃) cos𝑛𝑛𝜃𝜃 𝑑𝑑𝜃𝜃
2𝜋𝜋

0
 

𝑏𝑏𝑛𝑛 = � 𝐷𝐷𝑋𝑋(𝑓𝑓,𝜃𝜃) sin𝑛𝑛𝜃𝜃 𝑑𝑑𝜃𝜃
2𝜋𝜋

0
 

𝑐𝑐𝑛𝑛 = 𝑎𝑎𝑛𝑛 + 𝑖𝑖𝑏𝑏𝑛𝑛 

Def. 2: 𝜃𝜃𝑚𝑚,𝑋𝑋 = ∫ 𝐷𝐷𝑋𝑋(𝑓𝑓,𝜃𝜃)𝜃𝜃𝑚𝑚𝑚𝑚+𝜋𝜋
𝜃𝜃𝑚𝑚𝑚𝑚−𝜋𝜋

𝜃𝜃 𝑑𝑑𝜃𝜃 where X 
may be I or R. Caution: selection of integration 
limits is crucial. This definition may need itera-
tion and may converge to θm,X+π . 

In general situations, Def. 1 should be used 
instead of Def. 2 to avoid these potential prob-
lems. 

• �̅�𝜃𝑋𝑋 [rad]: Overall mean wave direction by 

Def. 1: �̅�𝜃𝑋𝑋 = arg �∫ 𝑆𝑆𝑚𝑚(𝑓𝑓)
𝑚𝑚0,𝑚𝑚

exp (𝑖𝑖𝜃𝜃𝑚𝑚,𝑋𝑋)𝑓𝑓2
𝑓𝑓1

𝑑𝑑𝑓𝑓� 
or 

Def. 2: �̅�𝜃𝑋𝑋 = ∫ 𝑆𝑆𝑚𝑚(𝑓𝑓)𝜃𝜃𝑚𝑚,𝑚𝑚
𝑚𝑚0,𝑚𝑚

𝑓𝑓2
𝑓𝑓1

𝑑𝑑𝑓𝑓  

In general situations, Def. 1 should be used 
instead of Def. 2 

• σθ,X(f) [rad]: Directional spreading (width), 
describing the directionality of short-crested 
waves 

Def. 1: 𝜎𝜎𝜃𝜃,𝑋𝑋
2 = 2(1 − |𝑐𝑐1|) where 

|𝑐𝑐1|2 = �∫
0

2𝜋𝜋
𝐷𝐷𝑋𝑋(𝑓𝑓,𝜃𝜃)sin𝜃𝜃 𝑑𝑑𝜃𝜃�

2

+

+�∫
0

2𝜋𝜋
𝐷𝐷𝑋𝑋(𝑓𝑓,𝜃𝜃)cos𝜃𝜃 𝑑𝑑𝜃𝜃�

2  

or   

Def. 2: 

𝜎𝜎𝜃𝜃,𝑋𝑋
2 = � 𝐷𝐷𝑋𝑋(𝑓𝑓,𝜃𝜃)�𝜃𝜃 − 𝜃𝜃𝑚𝑚,𝑋𝑋�

2𝑑𝑑𝜃𝜃
𝜃𝜃𝑚𝑚,𝑚𝑚+𝜋𝜋

𝜃𝜃𝑚𝑚,𝑚𝑚−𝜋𝜋
 

• 𝜎𝜎�𝜃𝜃,𝑋𝑋 [rad]: Directional mean spreading, ex-
ample by 

𝜎𝜎�𝜃𝜃,𝑋𝑋 = �
𝑆𝑆𝑋𝑋(𝑓𝑓)𝜎𝜎𝑚𝑚,𝑋𝑋

𝑚𝑚0,𝑋𝑋

𝑓𝑓2

𝑓𝑓1
𝑑𝑑𝑓𝑓 

• UI [ ]: Uni-directivity indes. Describing the 
variation of θX(f) with frequency. If θX(f) is 
independent of frequency, then UI=1. Oth-
erwise UI<1 

𝑈𝑈𝑈𝑈 = mod��
𝑆𝑆𝑋𝑋(𝑓𝑓)
𝑚𝑚0,𝑋𝑋

𝑓𝑓2

𝑓𝑓1
exp�𝑖𝑖𝜃𝜃𝑚𝑚,𝑋𝑋� 𝑑𝑑𝑓𝑓� 

• γX(f) [ ]: Skewness of directional spreading 
function, where X is I or R,  

𝛾𝛾𝑋𝑋(𝑓𝑓) = −𝑛𝑛2,𝑋𝑋 �
1 −𝑚𝑚2,𝑋𝑋

2
�
−3/2

 

Where 

𝑚𝑚2,𝑋𝑋(𝑓𝑓) = � 𝐷𝐷𝑋𝑋(𝑓𝑓,𝜃𝜃) cos�2�𝜃𝜃 − 𝜃𝜃𝑚𝑚,𝑋𝑋�� 𝑑𝑑𝜃𝜃
𝜋𝜋

−𝜋𝜋
 

𝑛𝑛2,𝑋𝑋(𝑓𝑓) = � 𝐷𝐷𝑋𝑋(𝑓𝑓,𝜃𝜃) sin �2�𝜃𝜃 − 𝜃𝜃𝑚𝑚,𝑋𝑋�� 𝑑𝑑𝜃𝜃
𝜋𝜋

−𝜋𝜋
 

• δX(f) [ ]: Kurtosis of directional spreading 
function, where X is I or R,  
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𝛿𝛿𝑋𝑋(𝑓𝑓) =
6 − 8𝑚𝑚1,𝑋𝑋 + 2𝑚𝑚2,𝑋𝑋

4(1 −𝑚𝑚1,𝑋𝑋)2
 

where 

𝑚𝑚1,𝑋𝑋(𝑓𝑓) = � 𝐷𝐷𝑋𝑋(𝑓𝑓,𝜃𝜃) cos�𝜃𝜃 − 𝜃𝜃𝑚𝑚,𝑋𝑋� 𝑑𝑑𝜃𝜃
𝜋𝜋

−𝜋𝜋
 

𝑚𝑚2,𝑋𝑋(𝑓𝑓) = � 𝐷𝐷𝑋𝑋(𝑓𝑓, 𝜃𝜃) cos�2(𝜃𝜃 − 𝜃𝜃𝑚𝑚,𝑋𝑋)� 𝑑𝑑𝜃𝜃
𝜋𝜋

−𝜋𝜋
 

• Wcw [ ]: Largest width of 3D wave crest 
measured between two zero-crossings. 

4. MODELLING OF MULTIDIREC-
TIONAL IRREGULAR WAVE SPECTRA 

4.1 Input spectra and parameters 

4.1.1 Uni-modal directional distribution mo-
dels: 

For single-peaked directional spreading, the 
most commonly used model is the cosine-
shaped type, see below. There are also other 
models suggested in the literature. They are all 
symmetric, and in analysis of actual measured 
data it may be difficult to distinguish some from 
the others, depending on the actual spectral res-
olution. Thus the main characteristics often re-
duces to the mean and the spreading (standard 
deviation or similar). But the actual input model 
should always be documented. 

Cosine model: 
𝐷𝐷(𝜃𝜃) = 𝐴𝐴1cos2𝑠𝑠[(𝜃𝜃 − 𝜃𝜃0)/2] ,   𝜋𝜋 > 𝜃𝜃 − 𝜃𝜃0 > −𝜋𝜋 

where 𝐴𝐴1 = {22𝑠𝑠−1𝛤𝛤2(𝑠𝑠 + 1) / [𝜋𝜋𝛤𝛤(2𝑠𝑠 + 1)]}  

Here the exponent s defines the spreading. A 
similar version often used is: 

𝐷𝐷(𝜃𝜃) = 𝐴𝐴2cos2𝑁𝑁(𝜃𝜃 − 𝜃𝜃0) ,   𝜋𝜋/2 > 𝜃𝜃 − 𝜃𝜃0
> −𝜋𝜋/2 

where A2={Γ (N+1) / [√(π)Γ(N+½)]}; and N 
describing the spreading.  

Normal (Gaussian) model:  

𝐷𝐷(𝜃𝜃)  = [1/√2𝜋𝜋𝜎𝜎𝜃𝜃] exp[ − (𝜃𝜃 − 𝜃𝜃0)2/ (2𝜎𝜎𝜃𝜃2)] 

The shape is quite similar to the cosine 
model (for the same standard deviationσθ).  

Wrapped Normal:  

Strictly speaking, the Normal model is de-
fined for an infinite linear domain, and not on a 
circle. For narrow distributions, this is no prac-
tical problem, but a wrapped circular model is 
basically more correct.  

Poisson model: 

The Poisson model is the simplest single-
peak shape of a “Maximum Entropy” model 
(see 4.4.2 below). It has a sharper peak but 
longer tails than the cosine model (for the same 
standard deviation σθ). 

Other models: 

Some additional models are presented and 
compared to the above models in an interesting 
review by Krogstad & Barstow (1999). 

4.1.2 Multi-modal distributions: 

Multi-modal distributions are normally 
specified as a combination of uni-modal shapes 
defined in 4.1.1 above. 

4.1.3 Frequency-dependent spreading 

Mitsuyasu model 

In the Mitsuyasu model a frequency-depend-
ent spreading exponent is assumed with s: 



 

ITTC – Recommended 
Procedures and Guidelines 

7.5 - 02 
-07 – 01.1 

Page 8 of 14 

Laboratory Modelling of Multidirectional 
Irregular Wave Spectra 

Effective Date 
2017 

Revision 
01 

 

𝑠𝑠(𝑓𝑓) =
𝑠𝑠𝑝𝑝(𝑓𝑓 𝑓𝑓𝑝𝑝⁄ )5           for  𝑓𝑓 < 𝑓𝑓𝑝𝑝
𝑠𝑠𝑝𝑝(𝑓𝑓 𝑓𝑓𝑝𝑝⁄ )−2.5      for  𝑓𝑓 ≥ 𝑓𝑓𝑝𝑝

  

where sp and fp are the spreading exponent and 
the frequency at the spectral peak, respectively. 

Donelan model 

The Donelan model has the form (Donelan 
et al., 1985, Janssen, 2004): 

𝑆𝑆(𝑓𝑓,𝜃𝜃) =
1
2
𝑆𝑆(𝑓𝑓)𝛽𝛽cosh−2[𝛽𝛽(𝜃𝜃 − �̅�𝜃(𝑓𝑓))] 

where �̅�𝜃(𝑓𝑓) is the mean wave direction and  

𝛽𝛽 = �
2.61 (𝑓𝑓 𝑓𝑓𝑝𝑝)⁄ +1.3    0.56 < 𝑓𝑓 𝑓𝑓𝑝𝑝 < 0.95⁄
2.28 (𝑓𝑓 𝑓𝑓𝑝𝑝)⁄ −1.3    0.95 < 𝑓𝑓 𝑓𝑓𝑝𝑝 < 1.6⁄
1.24                                       𝑓𝑓 𝑓𝑓𝑝𝑝 > 1.6⁄

 

Ewans model 

Ewans (1998) proposed  
𝐷𝐷(𝑓𝑓,𝜃𝜃)

=
1
𝜋𝜋 �

1
2

+ �[𝑎𝑎𝑛𝑛(𝑓𝑓)cos𝑛𝑛𝜃𝜃 + 𝑏𝑏𝑛𝑛(𝑓𝑓)sin𝑛𝑛𝜃𝜃]
∞

𝑛𝑛=1

� 

where:  

𝜃𝜃1(𝑓𝑓) = arctan �
𝑏𝑏1(𝑓𝑓)
𝑎𝑎1(𝑓𝑓)

�

𝜎𝜎1(𝑓𝑓) = {2[1− (𝑎𝑎12(𝑓𝑓) + 𝑏𝑏12(𝑓𝑓))1 2⁄ ]}1 2⁄
 

are the mean wave direction and the circular rms 
spreading. Similarly,  

𝜃𝜃2(𝑓𝑓) =
1
2

arctan �
𝑏𝑏2(𝑓𝑓)
𝑎𝑎2(𝑓𝑓)

�

𝜎𝜎2(𝑓𝑓) = �
1
2

[1 + (𝑎𝑎22(𝑓𝑓) + 𝑏𝑏22(𝑓𝑓))1 2⁄ ]�
1 2⁄  

denote the dominant wave direction and the di-
rectional spreading factor, respectively. 

Wind and swell 

Sea states are sometimes defined as a com-
bination of a wind sea component and a long-
periodic swell component. They are often spec-
ified as a combination of two uni-directional 
spectra, collinear or in different directions. A 
more appropriate model is the combination of 
two separate directional frequency spectra 
𝑆𝑆(𝑓𝑓,𝜃𝜃) =  𝑆𝑆𝑤𝑤𝑤𝑤(𝑓𝑓,𝜃𝜃)  +  𝑆𝑆𝑠𝑠𝑤𝑤(𝑓𝑓,𝜃𝜃). Here the di-
rectional distributions of each component may 
be frequency independent.  

Generally, the two-peaks models by Ochi-
Hubble or Torsethaugen are employed in tests. 
However, those models may be inadequated in 
the presence of multiple swells. In these cases, a 
triangular shaped spectrum is more representa-
tive for the swells (Olangon et al., 2014) 

𝑇𝑇(𝑓𝑓) =  
2𝜇𝜇(𝜇𝜇 − 1)

2𝜇𝜇 − 1
𝐻𝐻𝑠𝑠2

16𝑓𝑓𝑝𝑝
�𝜇𝜇

𝑓𝑓
𝑓𝑓𝑝𝑝
− (𝜇𝜇 − 1)�

𝜇𝜇 − 1
𝜇𝜇

𝑓𝑓𝑝𝑝

< 𝑓𝑓 < 𝑓𝑓𝑝𝑝 

𝑇𝑇(𝑓𝑓) =
2𝜇𝜇(𝜇𝜇 − 1)

2𝜇𝜇 − 1
𝐻𝐻𝑠𝑠2

16𝑓𝑓𝑝𝑝
�𝜇𝜇 − (𝜇𝜇 − 1)

𝑓𝑓
𝑓𝑓𝑝𝑝
�   𝑓𝑓𝑝𝑝 < 𝑓𝑓

<
𝜇𝜇 − 1
𝜇𝜇

𝑓𝑓𝑝𝑝 

𝑇𝑇(𝑓𝑓) = 0      𝑒𝑒𝑒𝑒𝑠𝑠𝑒𝑒𝑒𝑒ℎ𝑒𝑒𝑒𝑒𝑒𝑒 

where 

𝜇𝜇 =
3𝑄𝑄𝑝𝑝 + 2

4
     𝑄𝑄𝑝𝑝 =

2
𝑚𝑚0
2� 𝑓𝑓 𝑆𝑆  2(𝑓𝑓) 𝑑𝑑𝑓𝑓

∞

0
 

4.1.4 Record duration 

The accuracy and directional resolution in 
the final analysis increases with increasing rec-
ord duration. Generally, for laboratory model-
ling, long records, e.g. three hours (full scale), 
are recommended. 
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4.1.5 Stationarity 

It is generally assumed that stationary condi-
tions are to be modelled. However, if modelling 
of time-varying conditions is wanted, it can be 
specified by a sequence of shorter stationary 
conditions. 

4.2 Generation 

4.2.1 Synthesizing method 

The correct generation of the most realistic 
multidirectional irregular wave spectra in the 
testing area is the starting point for a meaningful 
experimental campaign. First of all, the inherent 
limitations of the basin wave field have to be 
clearly identified. Moreover, all the realistic as-
pects of the wave field have to be modelled at 
sufficient accuracy involving the wave maker 
control, flap geometries and appropriate analy-
sis techniques. An overview of recent develop-
ments in advanced basin wave modelling in-
cluding a wide range of aspects as realistic wave 
spreading, deterministic wave generation, fo-
cusing waves, directional wave analysis, spuri-
ous waves and shallow water wave generation is 
provided in Schmittner et al. (2013).  

In the following the two different philoso-
phies employed for the synthesization of multi-
directional irregular wave input signals, i.e. Sin-
gle-summation and Double-summation, are dis-
cussed. 

Single-summation method 

Control signals to the wavemaker are made 
to produce wave elevation time series signals 
η(r,t) at a location r≡(x,y) according to a single 
summation over NF discrete frequencies fm: 

𝜂𝜂(𝑥𝑥,𝑦𝑦, 𝑡𝑡) =

� 𝐴𝐴𝑚𝑚cos[2𝜋𝜋𝑓𝑓𝑚𝑚𝑡𝑡 − 𝑘𝑘𝑚𝑚(𝑥𝑥cos𝜃𝜃𝑚𝑚 + 𝑦𝑦sin𝜃𝜃𝑚𝑚) + 𝜀𝜀𝑚𝑚]
𝑁𝑁𝑁𝑁

𝑚𝑚=1

 

where Am is the  amplitude of the mth wave com-
ponent with a uniformly distributed random 
phase εm and is given by: 

𝐴𝐴𝑚𝑚 = �2𝑆𝑆(𝑓𝑓𝑚𝑚)∆𝑓𝑓 

km the wavenumber, one for each frequency, 
with a direction θm randomly drawn from the ac-
tual input distribution model, and with km = 
2π/λm, λm = wave length. For the Single-summa-
tion method, Yu et al. (1991) claimed that the 
division number of frequencies should be 
greater than 1000 for stable simulation. 

Double-summation method 

Control signals are generated according to a 
double summation over NF frequencies fm and 
ND directions θn: 
𝜂𝜂(𝑥𝑥,𝑦𝑦, 𝑡𝑡) =

� �𝐴𝐴𝑚𝑚𝑛𝑛cos[2𝜋𝜋𝑓𝑓𝑚𝑚𝑡𝑡 − 𝑘𝑘𝑚𝑚(𝑥𝑥cos𝜃𝜃𝑛𝑛 + 𝑦𝑦sin𝜃𝜃𝑛𝑛) + 𝜀𝜀𝑚𝑚𝑛𝑛]
𝑁𝑁𝑁𝑁

𝑛𝑛=1

𝑁𝑁𝑁𝑁

𝑚𝑚=1

 

where Amn is the component waveamplitude 
with a uniformly distributed random phase εmn  
and is given by: 

𝐴𝐴𝑚𝑚𝑛𝑛 = �2𝑆𝑆(𝑓𝑓𝑚𝑚,𝜃𝜃𝑛𝑛)Δ𝑓𝑓Δ𝜃𝜃 

Here km = wavenumber, one for each fre-
quency, with a direction θmn randomly drawn 
from the actual input distribution model, with km 
= 2π/λm, λm = wavelength. The number ND of 
directions per frequency must be high in order 
to avoid non-ergodic conditions in the sea. Ex-
perience has shown that ND=100 works fine. 

For the Double-summation method, Stans-
berg (1986) found that at least 100,000 wave 
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components are needed for eliminating the arti-
ficial phase locking phenomenon (Jefferys, 
1987) to reduce the variability of the directional 
spectrum to a reasonable level (see also Sand 
and Mynett, 1987). That is why the Single-sum-
mation method is more popular in practice than 
the Double-summation method for wave basins. 
On the other hand, the double-summation 
method generates a wave field with “natural” 
statistical variations in space. The single-sum-
mation method gives a constant, or determinis-
tic, spectrum S(f) in space (if possible laboratory 
reflections and diffraction  are disregarded).  

4.2.2 White noise generation 

Another approach to generate irregular sea 
states is to use a digital white noise w(t), charac-
terized by a density content W(f). By definition 
of white noise, the power spectral density is 
Sw(f) =1. An example is provided in Cuong et al. 
(1982) which is briefly summarized below.  

Given the characteristic function of the wave 
generator, H(f), the problem is to find a function 
y(t) to be used as input to the wave maker in or-
der to obtain the desired spectral density func-
tion to be realized, Sz. The idea behind the white 
noise generation approach is that the function 
y(t) can be obtained by w(t) through a specific 
filter Q(f). The filter Q(f) may be viewed as the 
inverse of that needed for whitening the function 
y(t).   

Hence, if Z(f) is the desired frequency con-
tent of the wave system to be generated, it is ob-
tained as: 

𝑍𝑍(𝑓𝑓) = 𝐻𝐻(𝑓𝑓) ∙ 𝑄𝑄(𝑓𝑓) ∙ 𝑊𝑊(𝑓𝑓) 

and thus the frequency content of y(t) is  
𝑌𝑌(𝑓𝑓) = 𝑄𝑄(𝑓𝑓) ∙ 𝑊𝑊(𝑓𝑓) 

Correspondingly, the spectral density func-
tions are related by:  

𝑆𝑆𝑧𝑧(𝑓𝑓) = |𝐻𝐻(𝑓𝑓)|2|𝑄𝑄(𝑓𝑓)|2𝑆𝑆𝑤𝑤(𝑓𝑓) 

As already stated, Sw can be assumed to be 
unity and then:  

𝑆𝑆𝑧𝑧(𝑓𝑓) = |𝐻𝐻(𝑓𝑓)|2|𝑄𝑄(𝑓𝑓)|2 

which leads to:  

|𝑄𝑄(𝑓𝑓)|2 =
𝑆𝑆𝑧𝑧(𝑓𝑓)

|𝐻𝐻(𝑓𝑓)|2 

By introducing the additional constraint that 
Q(f) has to be a real function, the above equation 
finally provides 

𝑄𝑄(𝑓𝑓) =
�𝑆𝑆𝑧𝑧(𝑓𝑓)
|𝐻𝐻(𝑓𝑓)|  

and then:  

𝑌𝑌(𝑓𝑓) =
�𝑆𝑆𝑧𝑧(𝑓𝑓)
|𝐻𝐻(𝑓𝑓)|  𝑊𝑊(𝑓𝑓) 

which represents the Fourier transform of the 
wave maker control time history.  

The white noise approach has the advantage 
of generating non-repeating records. 

4.3 Laboratory measurement 

4.3.1 Wave elevation array 

The most commonly used measuring device 
for estimation of directional spectra in a wave 
basin is an array of wave gauges for recording 
of the wave elevation η(r,t), arranged in a par-
ticular manner. The optimal range for the inter-
spacing between the wave gauges is more or less 
given by the actual wave length range - thus it is 
typically a fraction (≈1/10 – 1/2) of the domi-
nant wavelengths. Too coarse arrays lead to ali-
asing effects, while too small arrays give very 
small signals relative to noise. The detailed ar-
ray arrangement can vary from basin to basin – 
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linear array as well as circular (including trian-
gular) configurations are frequently in use. The 
spatial resolution of the estimates generally in-
creases by increased number of wave gauges, 
but this rule must also be seen in relation to basic 
limitations due to statistical variability from 
short records etc.  

4.3.2 Particle velocities 

Another common laboratory method is the 
combination of the horizontal particle velocity 
components (ux & uy) and elevation measure-
ments at the same location. This resembles, in 
principle, measurements by pitch-and-roll 
buoys used in the field. The maximum possible 
directional resolution is less than what is in prin-
ciple possible from a large array, since only the 
first two complex circular moments C1, C2 can 
be derived, but for short-duration records there 
may be only small differences. 

4.3.3 Pressure array 

An array of pressure sensors is sometimes 
used in the same manner as for elevation. In fi-
nite and shallow water, the sensors may be 
mounted on the bottom. 

4.4 Analysis and documentation 

4.4.1 Cross-spectral analysis 

The common way to analyze directional 
spectra from a combination of irregular eleva-
tion, velocity or pressure records is by means of 
cross-spectra between available pairs of measur-
ing channels. Inherently, this means that spectral 
averaging is an essential factor in the analysis, 
and statistical variability must be taken into ac-
count. From the cross-spectrum estimates, di-
rectional spectra and/or directional parameters 
(including some of the circular moments Cm) 

can then be derived by various methods, some 
of which are addressed in 4.4.2 below. 

4.4.2 Estimation methods 

Basic characteristics of some frequently 
used methods are briefly described in the fol-
lowing. More details are given in IAHR (1997), 
where also additional methods are described. 
Furthermore, new versions or updates of the 
methods are frequently being established. It is 
important to recall that the various methods are 
all different ways of trying to extract infor-
mation from a statistical data set (cross spectra) 
with sampling variability, and that it may some-
times be hard to judge which is "best”. In actual 
applications, it is important to document which 
method was used. 

Parameters from circular moments  

A simple, but robust and often satisfactory 
way of estimating the directional spectrum from 
measurements is by simple parameters such as 
the mean direction θ0 and standard deviation σθ. 
As shown in Chapter 3, there are two common 
definition sets for these parameters, based on the 
estimated first and second circular moment, C1 
& C2, respectively. Use of both sets can be help-
ful, since the first moment is more influenced by 
possible basin reflections. 

In addition, information on the deviation 
from a symmetric cosine (or Normal) distribu-
tion shape is also of interest, in particular to 
check possible secondary peaks in the spectrum. 
Parameters that partly describe this include the 
skewness and kurtosis, which can also be de-
rived from C1 & C2.    

Distributions by parametric models 

Plots of estimated directional spectra are of-
ten made by assuming a parametric model, e.g. 
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a cosine model or a Normal model. Parameters 
are estimated and then used in the plotting. The 
shapes will be influenced by the actual model 
assumed. The approach is used assuming uni-
modal as well as bi-modal spectra. However, for 
the fine resolution of multi-peaked distributions, 
other methods may be preferred. 

Note that the generation of directional plots 
directly based on a Fourier sum of the circular 
moments Cm is not recommended if only C1 & 
C2 are estimated, due to significant truncation 
effects. 

Maximum Entropy Method (MEM) 

Several of the most commonly used labora-
tory methods for estimation of distribution 
shapes are based upon the principle of Maxi-
mum Entropy from the theory of probability. 
The approach makes use of the similarity be-
tween the directional distribution function and a 
probability density function. Various types have 
been developed since the 1980’s; some of them 
are quite advanced. They seem to reproduce 
multiple spectral peaks reasonably well, but as 
for parametric models (and all other methods as 
well), the estimates will be coloured by the ac-
tual method and the way it is applied. Some ver-
sions may produce too high and too many peaks 
in the spectra, although the most advanced ver-
sions are more reliable. 

Maximum Likelihood Method (MLM) 

Another widely used group of methods is 
based on the principle of Maximum Likelihood, 
originally applied in seismic detection. It is nor-
mally easier to use and more computationally 
efficient than MEM (van de Berg, 2011). 

Bayesian method 

This is based on the Bayesian technique in 
probability theory. It is relatively complex in nu-
merical implementation, but at the same time it 
is basically a powerful method and takes con-
sistently into account the statistical nature of the 
estimation problem. Any kind of single- or 
multi-peaked spectrum can be analysed. It is 
best fitted for use with multi-gauge arrays, and 
not so well for single-point estimation. No a pri-
ori shape or shape characteristics is inherently 
assumed in the Bayesian principle. 

4.4.3 Multi-modal peaks; directional resolu-
tion 

It should be noted that regardless of the esti-
mation methods described above, the real reso-
lution of multiple peaks is also limited by the 
statistical errors in the cross-spectral estimates, 
given by the record length. Thus testing the 
method using “ideal” cross-spectra only is help-
ful, but should be accompanied by tests on 
“real” records. 

4.5 Spatial homogeneity; reflections 

In laboratory modelling, there are two basic 
challenges in generating a spatially homogenous 
multidirectional sea state. First, the finite 
lengths of multi-flap wave-makers mean that the 
range of possible directions at a given point in 
space may depend on the actual location, at least 
at the outer regions of the field. There are meth-
ods in order to reduce these effects, e.g. by mak-
ing use of sidewall reflections. Furthermore, re-
flections from beaches and sidewalls may also 
represent a problem, and one should try to keep 
these low. In any case, it will be helpful to doc-
ument the magnitudes of the above effects.   

5. KEY PARAMETERS 

See Chapter 3 – Definitions. 
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