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0BCFD Verification 
 
 

1. 1BPURPOSE OF PROCEDURE 

The Purpose of the procedure is to ensure to 
get high Quality CFD solutions. 

2. 2BCFD VERIFICATION 

2.1 ASME guidelines 

UProceduresU following ASME guidelines 2-5, 
verification analysis refers to documentation of 
order-of-accuracy, effects of artificial dissipa-
tion, grid dependence, and iterative convergence 
for a given application. Since the flows of inter-
est here are steady, guideline 6 does not apply. 

2.1.1 UGuideline 2 

URequires that the method be at least second-
order accurate in space. Order-of-accuracy is an 
important property that describes the rate at 
which the method should converge, as the grid 
is refined, to the exact numerical solution. The 
order may, for some methods, be expressed for 
each term in the governing equations (i.e., term-
by-term as suggested by guideline 1) or be de-
termined a posteriori through a careful grid 
study. The former approach, which for finite-
difference methods is derived from the leading 
truncated terms in the Taylor-series approxima-
tion of the partial derivatives, suffers from sev-
eral major deficiencies: not all methods are ame-
nable to such analysis (e.g., finite-analytic dis-
cretization); it is overly optimistic for problems 
using non-orthogonal and stretched grids; and 
for mixed-order methods, it fails to determine 
the spatial variation of order due to the changing 

balance between inertia, viscous, pressure, and 
turbulent forces. In contrast, the latter approach, 
which is subsequently discussed, gives the ac-
tual overall order-of-accuracy and is not method 
specific. 

In its most general form, spatial overall or-
der-of-accuracy may be expressed as a three-di-
mensional quantity (i.e., in each of the co-ordi-
nate directions px, py, pz) for both point wise 
(e.g., individual velocity profiles, pressure dis-
tributions, wave elevations) and integral (e.g., 
resistance coefficients) variables. To determine 
order, solutions on seven grids must be obtained 
and be in the asymptotic range. The grids are 
generated using grid doubling (or halving) inde-
pendently in each direction and the solutions on 
each may be referred to as  

i

jf ξ  (i.e., 

1 2 3 1 2 3 1 2 3, , , , , , , ,f f f f f f f f fξ ξ ξ η η η ζ ζ ζ ) where j 
=1,2,3 corresponds to fine-, medium-, and 
coarse-grid solutions, respectively. Note, for 
convenience, 1 1 1, ,f f fξ η ζ

1 correspond to the 
same solution. The asymptotic range is achieved 
when the solutions are grid convergent such that 
the grid convergence parameter, defined as the 
relative change between grids  

( )12 1 2 1/
i i i i

f f fξ ξ ξ ξε = − (2.1) 

is monotonically decreasing at the rate rP

p
P (i.e.,

23 12

i iprξ ξε ε≈ ), where r is the grid-refinement ratio 
and p is the order-of-accuracy. Each solution 
may be expressed in a three-dimensional Tay-
lor-series expansion. If the grids are analytical 
(i.e., transformation metrics are identical at 
common points between coarse, medium and 
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fine grids), the seven Taylor series may be ma-
nipulated to derive analytical expressions for or-
der accuracy 

( )
( )

( ) ( )

2 3
23 1

1 2 12 2

ln ln

ln 2 ln 2

i i

i i

i i
i i

i

f f
f

f f f
p

ξ ξ
ξ ξ

ξ ξ ξ ξ
ξ

ε
ε

 −   
  −   = =  (2.2) 

If it is further assumed, as is commonly done 
in practice, that the order is uniform in all direc-
tions, only three solutions on grids doubled (or 
halved) in each direction are required to deter-
mine p from (2.2). A grid-doubling approach 
has the additional benefit of enabling the use of 
Richardson extrapolation to produce a high-or-
der solution benchmark (order 3p on coarse 
grid) 

2
2 1 2

2
3 2 3

3 2 2
3 2 3

1 11
1 1

1 11
1 1

1 11
1 1

p
p p

p
p p

p p p
p p

f f f
r r

f f f
r r

f f f
r r

  = + −   − −  
  = + −   − −  
  = + −   − −  

 (2.3) 

The benchmark can then be used for deter-
mining the magnitude of numerical error rela-
tive to the benchmark and for evaluating grid de-
pendence. The primary difficulty in determining 
order-of-accuracy is the requirement of achiev-
ing the asymptotic range for all solutions. For 
RANS methods, this is due to having to resolve 
a range of length scales (i.e., viscous sub-layer, 
turbulent boundary-layer, bow, shoulder, and 
transom waves, etc.) on a highly stretched, non-
orthogonal grid and the effect of varying the grid 
number by a factor of 4 in each direction. 

2.1.2 UGuideline 3U 

Requires that inherent or explicit artificial 
dissipation must be assessed and minimized. In-
herent dissipation arises due to truncation errors 
in the discretization scheme and is represented 
by even-ordered terms on the right-hand side of 
the modified equation (i.e., the actual equation 
solved by the difference scheme including the 
terms which contribute to the dissipation and 
dispersion errors). Since inherent dissipation is 
a function of discretization and grid size, it can 
only be minimized through grid convergence 
studies (Guideline 4). If the discretization 
scheme is amenable to von Neumann analysis, 
and derivation of the modified equation, the in-
herent dissipation and its functional relationship 
to grid size and time step may be quantified.  
Unfortunately, due to nonlinearities, three-di-
mensionality, boundary conditions, and multi-
level schemes of practical Navier-Stokes meth-
ods, application of these analysis methods are 
difficult, and for some solution schemes may not 
be possible (e.g., finite element and finite ana-
lytic schemes). Explicit dissipation, on the other 
hand, is purposely added to some methods to 
damp oscillations and maintain stability. As 
such, minimization of errors due to excessive 
dissipation may be quantified through a para-
metric study wherein solution convergence 
and/or sensitivity with respect to the magnitude 
of the dissipation is established. 

2.1.3 UGuideline 4U 

Requires that grid independence or conver-
gence be established. To rigorously meet this re-
quirement, all grid parameters which affect the 
solution should be independently studied. Typi-
cal grid parameters include: grid type (C-type, 
H-type, O-type); number of points; clustering 
near walls and leading and trailing edges; aspect 
ratio; location of exit and outflow boundaries; 
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and minimum-spacing requirements for turbu-
lence models. For each, grid convergence is in-
dicated by small and monotonically decreasing 
 (2.1). The magnitude of  provides a meas-
ure of the grid convergence and, as shown in 
(2.2), the convergence of  is related to the or-
der-of-accuracy. Similarly, as discussed with re-
gard to order-of-accuracy, three-dimensional 
and/or averaged e  may be calculated for both 
pointwise and integral values. For three-dimen-
sional   seven grids are required to inde-
pendently determine 12 23  ,

i iξ ξε ε . Here however, a 
grid doubling approach is not required. Instead, 
non-integer refinement (1 < r < 2) may be used. 
Unfortunately, as r approaches 1,  will be-
come arbitrarily small and as such loses validity 
in assessing grid dependence. Therefore, a grid 
convergence index (GCI) (Roache, 1994a), 
which is a better measure of change between so-
lutions and defined as 

( )12 123 / 1
ii i pGCI r

ξξ ξε= −  (2.4) 

should be used. Note that the value 3 in (2.4) 
comes from simply making second-order meth-
ods with grid doubling the standard (i.e., for r = 
2 and p = 2, GCI =  ).  For independent co-
ordinate refinement, the total GCI can be deter-
mined by simply adding the contribution from 
each direction 

12 12 12 12GCI GCI GCI GCIξ η ζ= + +  (2.5) 

As a minimum requirement and an alterna-
tive to the three dimensional GCI, the averaged 
GCI may be determined with three solutions on 
grids which have been refined simultaneously in 
all directions. If the grids have a different r in 
each direction, a conservative GCI should be 
based on the smallest directional r. Finally, by 
calculating GCI for both pointwise and integral 
quantities, the grid convergence for each varia-
ble and region of the flow may be assessed. The 

primary difficulty in displaying grid conver-
gence is in obtaining solutions in the asymptotic 
range. Although the GCI requires order-of-accu-
racy, either a p may be assumed if the order is 
not known, or   may be used instead of GCI 
with the understanding that non-integer refine-
ment directly affects the magnitude of . Fi-
nally, the practicability of three dimensional 
GCI and a 7-grid convergence study has yet to 
be evaluated. 

2.1.4 UGuideline 5U 

Requires that iterative convergence must be 
addressed. Since direct solution of the linear 
equations that result from discretization is pro-
hibitive, iterative solution techniques are used, 
in general, in most implicit CFD methods. Con-
vergence error is due to stopping the iteration 
process and is defined as  

n n
itε φ φ= −    (2.6) 

where 2
nφ  is the numerical solution at the nth it-

eration and φ  is the exact numerical solution to 
the discretized equations. Theoretically, itera-
tion should continue until 3

n
itε  is equal to ma-

chine zero. However, in practice, grid complex-
ity (i.e., amount of stretching and non-orthogo-
nality) affects the rate of convergence such that 
for realistic applications, driving 4

n
itε  to machine 

zero is not possible. Therefore, minimization of 
convergence errors requires that appropriate 
measures of convergence be used and estimation 
of the uncertainty created by stopping. Conver-
gence may be assessed using two methods: re-
siduals defined as the difference between itera-
tions or the imbalance of the discretized equa-
tions with the current-iteration nφ 2. Based upon 
either of these methods, the iteration process is 
stopped when the residuals/imbalance reach an 
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acceptably small value (i.e., a convergence cri-
terion). Also, since the magnitude of the residu-
als is influenced by time step, under-relaxation, 
and initial conditions, it is often required that the 
residuals also drop a specified number of orders-
of-magnitude. To estimate the uncertainty cre-
ated by stopping the iteration process, two ap-
proaches are used. First, the convergence history 
of the solution variables (e.g., resistance, surface 
pressure, friction velocity) can be studied to 
show that for the given residual status, the solu-
tion is either invariant with further iteration or 
contains persistent oscillations. Second, equa-
tion imbalance may be used as a direct indica-
tion of the iteration error n

itε , since it can easily 

be shown that sinceφ  exactly satisfies the dis-
cretized equations, the imbalance with nφ  is the 
same as n

itε  back-substituted into the discretized 
equations. 

2.1.5 UGuideline 6U 

Requires that for transient calculations, 
phase error must be assessed and minimized. As 
mentioned in discussion of Guideline 3, von 
Neumann analysis and derivation of the modi-
fied equation may be used to determine the mag-
nitude and terms contributing to the dispersion, 
or phase, error. Also, as previously discussed, 
these methods are best applied to simple finite-
difference schemes and that for practical meth-
ods and problems, grid dependence and para-
metric studies are typically used to quantify 
phase error in conjunction with benchmark data. 

In conclusion, it should be emphasized that 
the purpose of validation analysis is to assure 
high-quality solutions through estimation of un-
certainty. Karniadakis (1995) has proposed a 
"numerical error bar" method which includes all 
contributions to the overall solution uncertainty.  
Based upon the present discussion, the total er-
ror bar would be comprised of modelling (i.e., 

turbulence, free-surface, and boundary-condi-
tion models) and numerical (i.e., iterative con-
vergence, grid convergence, temporal discreti-
zation, and artificial dissipation) errors and each 
component would be assessed through the ap-
propriate validation and/or verification analysis. 

2.2 UImplementation Recommendations 

Implementation recommendations are di-
vided into 5 steps. 

2.2.1 UGrid design and identification of im-
portant parameters U. 

For surface-ship and submarine flows, the 
important parameters include: grid number (for 
both RANS and free-surface grids); bow, stern, 
centreplane, free-surface, and sonar-dome lead-
ing- and trailing-edge clustering; location of in-
let, outer, and outflow boundaries; and mini-
mum-YP

+
P studies. Previous experience is often 

useful in limiting the scope of parameter varia-
tion. 

2.2.2 UConvergence studiesU. 

For each grid parameter, a 3-grid refinement 
study should be conducted. Iterative conver-
gence must be demonstrated and uncertainty es-
tablished for all solutions through the use of re-
siduals and convergence behaviour of the solu-
tion. Pressure and wall-shear stress on the body 
surface and wake-centreline velocity should be 
plotted over the last 1000 or so iterations. Based 
upon both integral (i.e., resistance coefficients) 
and point wise (i.e., surface pressure, wall-shear 
stress, and selected boundary-layer profiles) 
quantities, determine grid convergence by cal-
culating e and/or GCI. 
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2.2.3 UArtificial dissipationU. 

If explicit artificial dissipation is used, show 
convergence of solutions, and/or stability limits, 
with respect to magnitude. Minimally select 
three values of dissipation and calculate the 
change between solutions in a fashion similar to 
calculating the grid convergence parameter . 
 

2.2.4 UEstablish uncertainties and assemble 
numerical error barU. 

Based upon steps 1-3, establish uncertainty 
due to iterative convergence, grid convergence, 
and artificial dissipation. 

2.2.5 Order-of-accuracy and Richardson-Uex-
trapolated benchmark U. 

If grid doubling was not used in the grid-con-
vergence studies, a new set of grids and solu-
tions for either the three-dimensional (7 grids) 

or averaged (3 grids) order-of-accuracy determi-
nation must be generated. If all solutions are in 
the asymptotic range, calculate order using (2.1) 
for integral and pointwise quantities. With the 
true order-of-accuracy, recalculate the GCI's. 
Finally, calculate high-order benchmark using 
Richardson extrapolation (2.2) and determine 
grid dependence for both integral and pointwise 
quantities through comparison to the bench-
mark. 

In conclusion, steps 1-4 are required to es-
tablish uncertainty, which should be quoted, but 
due to time and cost constraints, the scope of the 
uncertainty analysis may be limited. Step 5 is 
also useful since p is needed for calculation of 
CGI, Richardson extrapolation provides a high-
order benchmark, and, maybe most importantly, 
knowledge of true order-of-accuracy on 
stretched and non-orthogonal grids should be 
useful in guiding future CFD developments. 
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Figure 1 – CFD Validation 


	1. 1BPURPOSE OF PROCEDURE
	2. 2BCFD VERIFICATION
	2.1 ASME guidelines
	2.1.1 UGuideline 2
	2.1.2 UGuideline 3U
	2.1.3 UGuideline 4U
	2.1.4 UGuideline 5U
	2.1.5 UGuideline 6U

	2.2 UImplementation Recommendations
	2.2.1 UGrid design and identification of important parametersU.
	2.2.2 UConvergence studiesU.
	2.2.3 UArtificial dissipationU.
	2.2.4 UEstablish uncertainties and assemble numerical error barU.
	2.2.5 Order-of-accuracy and Richardson-Uextrapolated benchmarkU.



