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Single Significant Amplitude and Confidence Intervals for Stochastic Processes 

 

1. PURPOSE OF PROCEDURE 

The purpose of this procedure is to formulate 
the process for characterizing the uncertainty for 
data resulting from stochastic processes, such as 
ship-motion data collected at either model or 
full scale.  Ship-motion data collected in both 
controlled and uncontrolled environments—
typically in a controlled environment for model-
scale data and in an uncontrolled environment 
for full-scale data.  The uncertainty of the results 
includes the following factors: 

• Statistical uncertainty caused by finite size 
of the sample 

• Uncertainty in the mass properties of the 
model or ship 

• Uncertainty in significant wave height and 
peak frequency 

Each contribution of uncertainty is charac-
terized by a variance of the estimates. 

This procedure only deals with the statistical 
uncertainty of stochastic data resulting from the 
finite size of the sample.  Although this proce-
dure relates to all stochastic data, data resulting 
from the response to random excitation, it will 
be dealt with as though it is ship-motion data. 

2. INTRODUCTION 

Ship-motion experimental results are char-
acterized in terms of statistical and condition un-
certainty.  Experimental results are considered 
random numbers because the environment is in-
trinsically random and the sample size is finite.  
Condition uncertainty focuses on environmental 
wave parameters and the uncertainty related to 

the mass properties of the model.  Condition un-
certainty is not treated in this document. 

Experimental results are presented in the 
form of single significant amplitude (SSA), 
which is a function of the variance estimate of 
the measured ship motions including surge, 
sway, heave, roll, pitch, yaw, and lateral and 
vertical accelerations at various locations on the 
vessel.  Statistical uncertainty will be expressed 
in terms of confidence intervals for the mean, 
variance and single significant amplitude (SSA) 
estimates. 

2.1 Statistical Uncertainty 

Statistical uncertainty is a result of the finite 
size of the sample data set, making averages ran-
dom.  The assumption of a normal distribution 
for these averages is based on the Central Limit 
Theorem. 

A normal distribution is defined by its mean 
value and variance.  The mean value of the esti-
mate approximately equals the estimate itself.  
The variance of the estimate is computed from 
the record time-series data.  Thus, the uncer-
tainty is quantified by the variance of the esti-
mates (i.e., mean, variance and SSA). 

The calculation of the variance of an esti-
mate has to account for the dependency of data 
points within each record, which are near to each 
other in time.  Two different procedures are pro-
vided.  One is for a case with a large number of 
records (runs) while the other is for a smaller 
number or records (runs). 
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3. COMPUTING STATISTICAL UN-

CERTAINTY 

The methods used to compute statistical un-
certainty will depend on the number of experi-
mental runs and their lengths.  If there are a large 
number of runs, say 30 or more at the same con-
dition, then the methodology is straight forward, 
and the mean and variance of each run is calcu-
lated separately and then they are treated as an 
ensemble to compute the uncertainty of the runs 
in total as an ensemble. 

In the case of a small number of runs, then 
there are two more complicated methods for 
computing the uncertainty, either of which can 
be applied.  However, it must be recognized that 
these runs must each be suitably long, say on the 
order of an hour or more, full scale, or the un-
certainty can be quite large. 

3.1 Large Number of Runs 

For cases where data is presented by 30 or 
more independent records (runs), the following 
procedure is applicable.  The procedure starts by 
calculating the mean value estimate for each 
record: 

1

1ˆ
iN

j i
ij

E x
N =

= ∑  

where xi is the measured value of the record cor-
responding to time instant i.  Then , an “en-
semble” or “population” mean value estimate 
for all runs corresponding to a condition, is ex-
pressed as: 

  (1) 

where Nr is the total number of runs for the con-
dition and Wj is the statistical weight of each run, 
based on the length of each run: 
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where Tj is the length of record j and TTotal is the 
cumulative time for all of the records.  If all of 
the records have the same sampling rate (time 
interval between data points), these weights can 
be calculated as: 
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where Nj is the number of data points in each 
record and NTotal is the total number of data 
points in all records. 

The variance of the mean for the ensemble 
[all records (runs) corresponding to a single con-
dition] can be estimated using the formula: 

 (4) 

An estimate of the variance of the variance 
for the ensemble is calculated starting with esti-
mating the variance for each record of the en-
semble.  This is calculated using the ensemble 
mean as: 
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  (5) 

Then the variance of the variance estimate is 
computed as 

 (6) 

The results of Eqs. (4) and (6) are carried for-
ward for the assessment of uncertainty of the fi-
nal result.  A more detailed discussion of the cal-
culation of the estimates and the derivation of 
these formulae can be found in Belenky, et al. 
(2013). 

3.2 Small Number of Runs 

For cases where data is presented by fewer 
than 30 independent records (runs), the variance 
of the variance estimate can be evaluated using 
the estimate of the auto-covariance function of 
centered squares (Belenky, et al. 2015) or by di-
rect counting.  In either case, the estimates of the 
mean value and variance are calculated from the 
original record using all available data. 

3.2.1 Variance of the Variance by Auto-Co-
variance Function of Centered Squares 

The confidence interval for a statistical esti-
mate provides a practical quantification of its 
statistical uncertainty and is generally calculated 
from the variance of the statistical estimate.  
Belenky et al. (2015) describes a technique for 
calculating the variance of the mean and vari-
ance of the variance estimates for a sample con-
sisting of a few relatively long records. 

The estimates are calculated from an esti-
mate of the auto-covariance function of the pro-
cess, ( )ˆ

iR τ : 

, 

where  τi is the ith time lag, Ê  is the estimate of 
the mean value, and N is total number of data 
points available; and from an estimate of the 
auto-covariance function of the centered squares 
of the process, ( )ˆ

y iR τ : 
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where ( )2ˆ
j jy x E= −  and V̂  is the estimate of 

the variance of the process. 

Using the auto-covariance functions of the 
process and of the centered squares of the pro-
cess, the variances of the estimates of a single 
record are computed as: 

 (7) 

 (8) 

where yV̂  is an estimate of the variance of the 
centered squares and M is the number points for 
which both auto-covariance functions are esti-
mated.  The value of M is chosen in the interval: 
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This recommendation for M is based on 

Priestley (1981); Kiefer & Vogelsgang (2002); 
Brockwell & Davis (2006); and Sun (2014).  
Additional sources include Crowson (1963a, 
1963b), which point out the necessity for a dra-
matic decrease in M relative to N. 

Consider a sample case consisting of a single, 
very long sample record: Run A.  Estimates of 
the auto-covariance function of the process and 
of its central squares are shown in Figures 1 and 
2, respectively. 

 

Figure 1 — Estimate of the Auto-Covariance Function of Roll Channel, Run A 

 

Figure 2 — Estimate of the Auto-Covariance Function of Squared Values - Roll Channel, Run A 
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Table 1 — Comparison of Different Options for M 

Run Value  
Eqs. (7) & (8) 

 
Eqs. (7) & (8) 

 
Eqs. (7) & (8) 

A Var. of Mean 0.001493 0.0008543 0.0005382 
Var. of Var. 0.7764 0.9358 0.9900 
Mean Upper -0.3218 -0.3402 -0.3521 
Mean Lower -0.4733 -0.4548 -0.4430 
SSA Upper 9.8120 9.8478 9.8592 
SSA Lower 9.0807 9.0449 9.0335 

B Var. of Mean 0.007340 0.005063 0.005162 
Var. of Var. 7.7460 8.9473 9.2669 
Mean Upper 3.5685 3.5400 3.541 
Mean Lower 3.2326 3.2611 3.260 
SSA Upper 17.203 17.253 17.265 
SSA Lower 15.884 15.835 15.823 

 
 

The accuracy of the estimate of the auto-co-
variance function deteriorates with the increase 
of the time lag, because the volume of available 
data is decreased.  In order to deal with deterio-
rated accuracy of the auto-covariance function 
for large lags, a linear weighting function and 
averaging over even a few records, described in 
Belenky et al. (2013), has been found to give 
reasonable results.  However, the case consid-
ered consists of only one record.  As a result, the 
numerical error remains in the estimate, reach-
ing approximately 7 to 8-percent of the first term. 

Comparisons of the results for two sample 
runs, Runs A and B using Eqs. (7) and (8) is 
given in Table 1. 

The boundaries of SSA show insignificant 
influence of choice of M using Eq. (9); the dif-
ference can be seen only in the second digit after 
the decimal point. 

3.2.2 Variance of the Variance by Direct 
Counting 

The objective is to find a statistical estimate 
of SSA and evaluate the uncertainty of this esti-
mate.  The sample is presented as a set of records 
of a stationary process; lengths of the records 
may differ from each other. 

For a normal (Gaussian) process, the 
95.45th-percentile (often just called the 95th 
percentile) corresponds to the average of the 
one-third largest amplitudes; this is defined as 
the Single Significant Amplitude (SSA).  In di-
rect counting, the average of the one-third larg-
est amplitudes will be used to compute the SSA, 
independent of any assumptions as to the distri-
bution of the records being analysed. 

The statistical estimation of SSA via direct 
counting is free from any assumptions on the 
distribution of the process x(t).  However, it is 
still assumed that the process is stationary.  The 
sample of the process is represented as a set of 
independent records of different lengths, while 

NM 5.0= NM = NM 2=
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dependence may be significant within each rec-
ord.  A nested array (array consisting of records 
of different length) is a convenient way to de-
scribe this type of data: 

{ } ; 1,..., ; 1,...,j ii
X x j N i Nr= = =  

where X is used to identify the entire sample, the 
index i, identifies a record and the index j a point 
within a record.  Nr is the number of records 
available in the sample, and Ni is the number of 
data points in a specific record. 

First, the mean value of the process x(t) is 
estimated based on the sample X: 

 

where Wi, the weighting factors for each record, 
calculated in according to Eq. (2) or (3).  Next, 
the mean-crossing points (times) are found.  
These points are also presented as a nested array: 

{ } ; 1,..., ; 1,...,j ii
TM Tm j Nm i Nr= = =  

where Nmi  is the number of mean crossings in 
the ith record. 

The next step is to search for the peak values, 
which are defined by the largest absolute value 
of the sample between each pair of consecutive 
crossings of the level of the mean value estimate, 
see Figure 3.  The total number of peak values 
will be: 

 

The peak data must include the time corre-
sponding to these points.  The data may be pre-

sented in the form of a matrix with three col-
umns—record index, time of peak value in the 
record, and peak value—and Np rows.  The ma-
trix is defined as follows: 
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where k is the index of the peak value, which is 
advanced every time a mean-crossing peak is 
identified. 

The next step is to find the level correspond-
ing to the one-third largest peak values.  It is, in 
fact, an estimation of the 1/3rd quantile.  

It is found by sorting the peaks by value 
(highest to lowest) and finding the value of the 
peak that encompasses the highest of 1/3rd set 
of the sorted list of peaks: 

 

here Pk<3> means the "3rd column of the matrix 
Pk". 
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Figure 3 — Definition of Mean Crossing Peaks 

It is found by sorting the peaks by value 
(highest to lowest) and finding the value of the 
peak that encompasses the highest of 1/3rd set 
of the sorted list of peaks: 

 

here Pk<3> means the "3rd column of the matrix 
Pk". 

The sample of the 1/3rd largest peaks is then 
extracted from the matrix Pk: 

 

where Ns is the total number peaks above the 
1/3rd-quantile estimate and will be, by defini-
tion, the same as the index ids above: 

 

The estimate of SSA is the estimate of the 
mean value of Pk<3>: 

 (10) 

Figure 4 illustrates the peak average calcula-
tion for a sample roll time history.  Peak values 
are marked in green or blue.  The level of the 
1/3rd highest peak values is set as the 66.6th per-
centile of all peaks and is shown as the green line.  
The peaks above this value are marked in blue 
and comprise the 1/3rd largest peaks.  The aver-
age of these blue peaks is the SSA estimate and 
is shown as a blue line. 

3.2.3 Uncertainty of Statistical Estimation of 
SSA 

The statistical estimate of SSA by direct 
counting, Eq. (10) is a random number, so a con-
fidence interval is needed to assess the statistical 
uncertainty of the estimate.  As the estimation of 
this mean involves the summation of instances 
of random variables, it is reasonable to assume 
a normal distribution for the estimate.  To define 
the normal distribution, one needs to compute 
the mean value and the variance of the estimate.  

As the mean is known to be an unbiased es-
timate, the mean of the estimate is equal to the 
estimate itself:

 

 (11) 
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Figure 4 — Peak Average Calculation 

 

Figure 5 — Estimated Auto-correlation for Roll Motion 

 

However, in order to find the variance of the 
estimate, Eq. (10), the dependence within the 
sample Ps<3> must be addressed.  The 1/3rd-
largest peaks, as well as all of the peaks, are the 
values of the motion process at particular in-
stants of time, which may be dependent on one 
another if they are from the same record and are 
close together in time. 

Statistical dependence within the ship-mo-
tion process is a reflection of the physical nature 
of the mechanical motion of a rigid body on the 
surface of a dense fluid.  Several phenomena 
contribute to this dependence.  First, waves 
themselves carry the dependence because water 
is a dense fluid and motion of water possesses 
significant inertia.  A ship acting essentially as a 
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filter transforms this dependence in terms of its 
response.  Second, a ship has its own inertia, 
which also contributes to dependence.  Third, 
there are hydrodynamic forces proportional to 
the accelerations, generally referred to as added 
masses, which also are contributing factors.  The 
fourth is the hydrodynamic memory effect, 
which is a result of the radiation and diffraction 
of waves.  The overall dependence can be char-
acterized through an estimate of the auto-covar-
iance function of the motion data.  The typical 
appearance of the estimate of the autocorrelation 
(normalized auto-covariance) function for roll 
motions is shown in Figure 5. 

The time difference τind for which the mo-
tions (or peaks) can be assumed to be independ-
ent is approximated by the time lag where the 
normalized auto-covariance function falls below 
the value of 0.05 (taken as a significance level).  
As the auto-correlation function of ship motions 
is oscillatory, it is convenient to use its envelope 
instead.  The envelope is also plotted in Figure 
5 by connecting the absolute value of the peaks 
of the auto-correlation function by a blue line. 

The peaks that were recorded within the time 
difference τind, are assumed to be dependent.  
These peaks are grouped.  These groups com-
prise a series of successive peaks, which are 
from the same record and for which the time in-
crement between peaks is less than τind.  As these 
groups will consist of different number of peaks, 
a nested array is a natural form for organizing 
this data: 

{ } ; 1,..., ; 1,...,j ii
PS Ps j Npc i Nps= = =  

where Npci is the number of peaks in the ith 
"group" and Nps is the number of "groups" 
found while analyzing the dependence between 
the 1/3rd-largest peaks. 

Once the peaks have been sorted into these 
groups, the variance of the peak average esti-
mate can be computed using a procedure similar 
to that for the mean or variance of a sample con-
sisting of a few, relatively long records (Belenky 
et al. 2013).  In that procedure, the data from 
different records was assumed to be independent, 
and the estimate of the auto-covariance in time 
was used to compute the effect of dependence 
within each record.  To maximize accuracy, an 
average auto-covariance function is computed 
for all records. 

The calculation for the variance of the peak 
average follows this same approach, except that 

• Peaks from different groups are assumed to 
be independent 

• Auto-covariance with respect to the differ-
ence in peak index, rather than time lag, is 
used to account for the dependence between 
peaks in a group 

• Auto-covariance is averaged over groups, 
rather than records 

This averaged auto-covariance function for 
the 1/3rd-largest peaks is estimated as: 

{ }( )
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1 1
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∑ ∑  (12) 

where Npm is the maximum number of peaks in 
a group:

 
  

Figure 6 shows an example of the averaged 
auto-covariance for roll as estimated using Eq. 

( )iNpcNpm max=
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(12).  As can be seen, the dependence covers 
three sequential peaks. 

 

Figure 6 — Estimate of Averaged Auto-Covariance for 
1/3rd Largest Peaks for Roll Motion 

Once the averaged auto-covariance function 
has estimated with Eq. (12), the variance of the 
SSA estimate can be estimated as follows: 
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 (13) 

where Mi is the summation cutoff for each group, 
which is set to: 

 

In theory, the summation can be carried out 
to –  1iNpc , but the estimate of the auto-covar-
iance function becomes inaccurate at large sep-
aration times (or peak indices in this calculation) 
as the number of data pairs used in calculating 
the function becomes small. 

Once the variance of estimate has been cal-
culated, the assumption of a normal distribution 
for the SSA estimate allows of the confidence 
interval for SSA as: 

 (14) 

where Kβ is a factor based on the quantile of a 
normal distribution for a specified level of prob-
ability.  For a typical probability level of 0.95, 
Kβ is approximately 1.96. 

4. CONFIDENCE INTERVAL 

4.1 General 

The confidence interval (CI) is defined for a 
sample estimate and reflects its uncertainty, 
which is caused by its random nature.  A two-
sided CI is an interval around the estimate where 
the true value is contained with a given proba-
bility (confidence probability or confidence 
level). 

The calculation of the confidence interval re-
quires a distribution of the estimate.  The lower 
and upper boundaries SLow and SUp of the confi-
dence interval of the estimate S are calculated 
with quantiles (inverse of the cumulative distri-
bution function).  For two-sided confidence in-
terval, these boundaries are 

1
;

3
1

3

Low

Up

P
S Q

P
S Q

β

β

− 
= 

 
+ 

= 
 

  (15) 

where Pβ is the accepted confidence probability 
and Q stands for quantile. 

As stated in Section 3, the normal distribu-
tion is assumed for all values except for signifi-
cant wave height and modal period.  For the nor-
mal distribution, the center of the range is deter-
mined by the calculated statistical estimate.  The 

iNpcM =i

A)ŜVar(S K A ŜSAŜS HiLow, β±=
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width of the range is determined from the vari-
ance of this estimate.  Note that this does not as-
sume that the distribution of the process itself is 
normal. 

If a normal distribution of the estimate is as-
sumed, Eq. (15) can be simplified, because the 
normal distribution is symmetric 

( )

( )
Low

Up

S S K Var S

S S K Var S
β

β

= −

= +
 

where Var(S) is the variance of the estimate S 
and the coefficient Kβ is one-half the non-di-
mensional width of the confidence interval and 
is calculated as: 

 

where QN is a quantile of the standard normal 
distribution (zero-mean & unity-variance).  For 
the typical probably of 0.95, Kβ equals 1.96 

4.2 Confidence Interval for a Mean Value 
Estimate 

The upper and lower bounds of the confi-
dence interval for the mean values are: 

 

 

In these expressions,  is the mean esti-

mate for the ensemble, Eq. (1); and  is 
the estimate of the variance of the mean for the 
ensemble, Eq. (4). 

4.3 Confidence Interval for a Variance Es-
timate 

Expressions for the confidence interval of 
the variance are: 

 

 

where   is the variance estimate for the en-

semble, calculated with Eq. (5); is the 
variance of the variance estimate for the ensem-
ble, calculated with Eq. (6). 

5. SINGLE SIGNIFICANT AMPLI-
TUDE (SSA) 

The following equation relates a generic var-
iance estimate  for a process X(t) and its SSA: 

  (16) 

Strictly speaking, Eq. (16) defines single sig-
nificant amplitude for a normal process only.  If 
X(t) is normal, SSAX is the mean value of the 1/3 
largest amplitudes.  If Eq. (16) is used without 
assumption of normality X(t), it can be consid-
ered as a convenient form of representation for 
variance and/or standard deviation estimates. 

The delta method is used to calculate the var-
iance of the SSA.  The upper boundary is deter-
mined assuming a normal distribution for the 
variance of the SSA estimate.  The bias intro-
duced by the square root function is assumed to 
be small, following the conventional assumption 
of small bias of standard deviation. 

Equation (16) is a deterministic function of a 
single random argument—the variance estimate 





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 +
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β 2
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.  By the delta method, this function is ex-

panded in a Taylor series around its mean value 

 

( )

( )
0

0

0 0
ˆ ˆ

2 2

02
ˆ ˆ

ˆ ˆ( )ˆ ˆˆ ˆ( ) ( ) ˆ
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X V V

X
X

X V V

dSSA VSSA V SSA V V V
dV

d SSA V V V
dV

=

=

≈ + −

+ − +

  (17) 

In the delta method, Eq. (17) is linearized, so 
the terms of second order and higher are ne-
glected.  The Evaluation of the derivative and 
substitution into Eq. (16) yields the following 
linearized function: 

 (18) 

The variance of the variance estimate is 
known:  for each process of interest.  
The mean value of the estimate  is a 
deterministic value, i.e., is a constant in (17). 

 and  

The application of the rule for the variance 
of a linear function, applied to equation (18) 
yields: 

. (19) 

The true mean value for the variance esti-
mate  is not known, so it is replaced 
by its estimate, which is the variance estimate 
itself: 

 

Eq. (19) becomes: 

. (20) 

Finally, the upper and lower boundaries of 
the SSA are calculated as: 

 (21) 

6. COMPARISON OF RESULTS 

The final result of the procedure is an esti-
mate of the Single Significant Amplitude (SSA) 
and its confidence interval. 

Two different methods for calculating this 
estimate have been presented: 

• Indirect method—using the estimate of the 
variance 

• Direct method—using the direct counting of 
zero-crossing peaks. 

 

Figure 7 — Comparison of Different Methods of Calcu-
lation of SSA with CI, Run A 
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Figure 8 — Comparison of Different Methods of Calcu-
lation of SSA with CI, Run B.  

Two methods have been presented for as-
sessing the confidence interval: 

• Through auto-covariance estimate, using the 
variance of the variance Eq. (8) and then 
Eqs. (20) and (21) 

• Using the uncertainty of direct counting of 
zero crossing peaks, Eqs. (13) and (14) 

Figures 7 and 8 compare SSA estimates with 
confidence interval as computed using the direct 
and indirect methods and with the confidence 
interval computed with the two methods.  

As each estimate is within the confidence in-
terval of the other, the estimates are statistically 
equivalent. 

As each estimate is within the confidence in-
terval of the other, the estimates are statistically 
equivalent. 

Comparison of the two estimates and two 
methods of evaluation of the confidence interval 
lead to the conclusions: 

• Estimate of SSA calculated from variance is 
statistically identical to the estimate of SSA 
calculated by averaging peaks. 

• Confidence interval of the SSA calculated 
by direct counting of peaks results in the 
smallest value relative to the other methods. 

In general, smaller confidence interval 
means the data is used more effectively, result-
ing in better accuracy of the estimate.  Based on 
10 cases, direct counting of peaks is the most ef-
ficient approach for processing the data.  How-
ever, the difference between direct counting and 
using the variance was small for all 10 cases; so 
the practical impact is likely to be negligible. 
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