ITTC, 2014 Copenhagen, Denmark

Modelling Nonlinear Seas Challenges and achievements

Chris Swan

Fluid Mechanics Section
Department of Civil & Environmental Engineering
Imperial College London

Background: industrial trends

- Increasing adoption of reliability criteria
- Based upon crest height / wave load statistics
- Often requiring 10⁻⁴ exceedence probabilities

Implies long random simulations

- Concern over abnormally large (Freak / Rogue) waves
- Occur in the tail of the distribution
- Is there some new physics governing these events?

Implies even longer random simulations

- Incorporation of wave breaking
 - Kinematics
 - Loads (possible step change: slamming)

Background: Scientific understanding

Nonlinear wave-wave interactions:

- Free waves / bound waves, O(a²), well established
- Resonant interactions, O(a³), allow spectral change
 - Slow modulation (wave growth)
 - Rapid evolution (characteristic of extreme events?)

Consequences:

- Spectral shape may vary (rapidly) in space & time
- Design spectra:
 - May apply on average
 - But not necessarily local to an extreme wave event
- Spectral broadening larger maximum crests
- Nonlinear evolution change in directional spread
- Directionality is key to wave breaking

breaking is fundamental to design

Wave Basin at Imperial College London

Street

A.

Calibration of test facilities

(a) Basin calibration:

- Iterative approach to achieve:
 - Desired frequency spectrum
 - Desired directional spread
- What happens to the spectral evolution?
- Have important nonlinear effects been calibrated out?

(b) Paddle calibration

- Generation of underlying linear wave components
- Sea state will evolve as required
- Ideally based upon a theoretical transfer function
- Effective absorption essential (beach and paddles)

Methodology adopted at Imperial College

Methods of sea state generation

(a) Double summation method (DSM)

- All frequencies in all directions
- Sum over both frequency and direction
- Non-ergodic

(b) Single summation method (SSM)

- Any one frequency component generated in one direction
- Spectrum sub-divided into narrow (but finite) bands
- Within each band:
 - Sequential components generated in sequential directions
 - OK, but requires high resolution (calibration more difficult)

(c) Random directional method (RDM)

- Any one component in one direction
- Direction of propagation chosen randomly
- Based on normal distribution weighted by DSF
- Easy to incorporate random amplitudes

Generated data: frequency spectra

JONSWAP

- match to target & spatial uniformity

Generated data: directional spreading

- match to target
- linear sea state

Individual wave components:

- random phases (0 \rightarrow 2\pi)
- random amplitudes (Rayleigh distributed)
- direction of propagation, random with weighting based upon DSF

Laboratory data (T_p =16s, σ_{θ} =15°)

Laboratory data (T_p =16s, σ_{θ} =15°)

Laboratory data (T_p =16s, σ_{θ} =15°)

Crest height statistics

Evolution of distribution with progressively more seeds:

Comparisons to field data

- Analysis of available field data (>5x10⁵ 20min records)
- Undertaken within the CresT JIP

Comparisons with numerical calculations

- Applied to non-breaking wave events
- Numerical calculations based upon <u>focused wave groups</u>
- Undertaken using a fully nonlinear BEM solution

Crest amplifications: Physical explanation

- Local and rapid spectral change
- Movement of energy to the higher frequencies
- Due to third-order resonant interactions

Long-term goal

- An empirical crest height distribution
- Incorporating: nonlinear amplification
 - wave breaking
- Based upon experimental & theoretical input

Nonlinear amplification and breaking

Critically dependent on steepness & directional spread

Directional analysis: input data

Directionality: nonlinear changes

Comparisons to laboratory data (H_s =10m, $\frac{1}{2}H_s k_p$ =0.081)

- σ_{θ} =15° calculate
 - calculated using the EMEP

• input data: η,u,v

sea state generated using RDM

Directionality: nonlinear changes

Comparisons to laboratory data (H_s =15.0m, $\frac{1}{2}H_s k_p$ =0.122)

• $\sigma_{\theta}=15^{\circ}$

• calculated using the EMEP

• input data: *η*,*u*,*v*

sea state generated using RDM

Directionality: nonlinear changes

Comparisons to laboratory data (H_s =20.0m, $\frac{1}{2}H_s k_p$ =0.163)

- σ_{θ} =15° calculation
 - calculated using the EMEP

• input data: *η*,*u*,*v*

sea state generated using RDM

Directionality, alternative quantification

Based upon the velocity reduction factor (VRF)

- comparisons to laboratory data
- VRF averaged over 20 x 3-hour seeds for each sea state
- changes with H_s

- Comparisons to laboratory data (H_s =10m, σ_{θ} =15°, $\frac{1}{2}H_s k_p$ =0.081)
- VRF calculated for individual waves
- Plotted in terms of the normalised crest elevation, η_c/η_{cmax}

- Comparisons to laboratory data (H_s =15m, σ_{θ} =15°, $\frac{1}{2}H_s k_p$ =0.122)
- VRF calculated for individual waves
- Plotted in terms of the normalised crest elevation, η_c/η_{cmax}

- Comparisons to laboratory data (H_s =20m, σ_{θ} =15°, $\frac{1}{2}H_s k_p$ =0.163)
- VRF calculated for individual waves
- Plotted in terms of the normalised crest elevation, η_c/η_{cmax}

Conclusion: largest individual waves more long-crested

Wave breaking: Is it important in the field?

Laboratory data: 10⁻⁴ deep water design wave

10⁻⁴ design sea state (North Sea): WID event

Evidence of an over-turning wave

Wave breaking

Should be viewed as a process, not a single deterministic event

- constant spectral shape
- constant directional spread
- increased energy levels

Wave breaking: the role of directionality

$$\sigma_{\theta}$$
=15°

 $\sigma_{\theta}=30^{\circ}$

The occurrence of wave breaking

- Visual observations allow breaking waves to be identified
- Where breaking is dominant (on average) data is given in red
- With increasing steepness, the tail of the distribution is controlled by breaking, hence the reduction in crest heights
- Laboratory data relates to $\sigma_{\theta}=15^{\circ}$

Kinematics measurements

- Laser Doppler Anemometry (LDA).
 - Provides time-history at a single point
 - u(t), v(t) & w(t)
 - Multiple runs to build spatial profiles
 - Highest accuracy (better than ±1%)
 - Largest data rate (kHz)
 - Required seeding density more easily achieved
 - Very time consuming

Repeatability of wave records:

Example data records (LDA: Wave Case 2)

Intermittent velocity records: high in wave crest

Horizontal velocities, *u(t)*: Wave Case 1 various elevations, -20.0m<*z*<+16.1m

London

Comparisons to predicted velocities, *u*(*z*): Wave Case 1

– solutions matched to η_{max}

Horizontal velocities, u(t): Wave Case 2 various elevations, -30.0m<z<18.5m

Comparisons to predicted velocities, *u*(*z*): Wave Case 2

– solutions matched to η_{max}

Horizontal velocities, u(t): Wave Case 3 various elevations, -30.0m<z<20.4m

Comparisons to predicted velocities, *u*(*z*): Wave Case 3

– solutions matched to η_{max}

Crest kinematics, *u*(*z*) for *z*>0

Concluding Remarks #1

Crest height statistics:

- Very long random wave simulations undertaken
- Significant departures from existing O(a²) design solutions
- Emphasised the importance of:
 - Nonlinear amplifications (beyond 2nd order)
 - Wave breaking
- Critically dependent upon:
 - Sea state steepness (½H_sk_p)
 - Directional spread
 - Effective water depth (k_pd)
- Largest waves are more uni-directional
- Average shape differs from linear predictions

Rigorous control of generated wave components is essential

Concluding Remarks #2

Kinematics measurements:

- Detailed observations above SWL
- Highlight the inadequacy of the commonly applied solutions
- u_{max} as $z \rightarrow \eta_c$ significantly increased
 - Relevant for wave slamming & wave-in-deck loading
 - Phase velocity is not an effective upper bound: u_{max} >c
- *u_{max}* for *z*<SWL reduced
 - Relevant for sub-structure loads & sea bed pipelines
 - Present designs may be overly conservative

Concluding Remarks #3 <u>Future developments</u>:

Formulation of an empirically based wave model:

- Wave profiles
- Wave crest statistics
- Wave kinematics

Inclusive of nonlinearity, directionality and wave breaking

The true benefits of physical model testing lies in:

- Its combination with theoretical / numerical models
- Not as a simple means of validation / calibration
- Rather:
 - The provision of the underlying physics
 - The identification of critical effects

Taken together they can provide solutions to some of the most challenging wave & wave-loading problems