

Errata

The Table given below shows Correction in the Report (only for hard copy edition).

1.	Correction of Volume	Ι	Appendix 7	List of Member Organizations
----	-----------------------------	---	------------	------------------------------

Page No. and Side (Left/ Right)	Correction Line from the top(\downarrow)	Before Correction	After Correction
P.378 R	19 th line (↑)		Jiangsu University of Science and Technology School of Naval Architecture and Ocean Engineering No.2 Mengxi Road Zhenjiang 212003 Attn.: Prof. Renqing Zhu Tel.: +86 511 84401133 Fax: +86 511 84421823 E-mail:zjcyzlq@public.zj.js.cn URL: http://202.195.195.151/index.asp

2. Correction of Volume II The Specialist Committee on Azimuthing Podded Propulsion

Page No. and Side (Left/ Right)	Correction Line from the top(\downarrow) or bottom (\uparrow)	Before Correction	After Correction
P.563	Report name	Final Report and Recommendations to the 25 th ITTC	Report and Recommendations to the 25 th ITTC
P.563 R	14^{th} line (\uparrow) and	Continue the review of hydrodynamics of POD propulsion	Continue the review of hydrodynamics of pod
	16 th line (†)	for special applications including	propulsion for special
		fast ships, ice going ships (Liaise	applications including fast ships,
		with the Ice committee) and	ice going ships (Liaise with the
		special POD arrangements	Ice committee) and special pod
			arrangements
D 564 I	10^{th} line (\downarrow)	3.1 General Remarks	3.1 General Remarks
F.504 L		It is very obvious on high speed	It is very obviouson high speed
		RO/RO vessel (HAMANASU).	RO/RO vessel (Hamanasu).
D 564 I	16th line (†)	SES (Super Eco-Ship) projects	SES (Super Eco-Ship) projects
F.304 L		The projects started from 2001	The projects started in 2001
	and	and can be divided into two	and can be divided into two

840

	15^{th} line(\uparrow)	projects.	phases.
P564 L	4 th line (↑) and 2 nd line (↑)	The first vessel of SES was delivered 2007 and the first vessel of SES phase 2 "Shige Maru"was 2008 .	The first vessel of SES was l delivered in 2007 and the first vessel of SES phase 2 "Shige Maru"was in 2008 .
P.567 R	1^{st} line (\downarrow)	9.4 . This is one of the demonstrators developed under th "Super Eco-Ship"	9.2 . This is one of the demonstrators developed under the "Super Eco-Ship"
P.568 R	18 th line (↑) and 14 th line (↑)	 5.2.2 Test conditions The test conditions for an open water test of a podded propeller are of rotation: Rpm close to the matching podded propulsor open water test 	 5.2.2 Test conditions The test conditions for an open water test of a pod unit are of rotation: Rpm close to the matching propeller open water test
P.571 R	10th line (↑)	(7) Full scale correction The drag of the model pod a described in Section 6.2, to arriv	(7) Full scale correction as The drag of the model pod as redescribed in Section 6.3, to arrive
P.572 R	24 th line (↑)	For the pod housing drag However, Furthermore, scal effects are present on the measure pod housing drag and they shoul be corrected for as described in Section 3.2.	g,For the pod housing drag, leHowever, Furthermore, edscale effects are present on the ldmeasured pod housing drag and inthey should be corrected for as described in Section 6.3 .
P.574 L	8 th line (†)	$\Delta R_{POD} = \Delta R_{BODY} + \Delta R_{STRUT} + A$ \downarrow $R_{POD} = R_{BODY} + R_{STRUT} + R_{INT} + A$	$\Delta R_{INT} + \Delta R_{LIFT}$ $+ R_{LIFT}$
P.574 R	12 th line (↓) and 14 th line	Where $(1+k)$ is appropriate form factor described in Section 6.2.1 and 6.2.2, R_F is frictional resistance of the respective component	Where $(1+k)$ is appropriate form factor described in Section 6.3.1 and 6.3.2, R_F is frictional resistance of the respective component.
P.574 R	14 th line (↑) and 12 th line (↑)	Although the contribution of the interference drag, important its expression in the above formula isand hence there will no scale effect associated	Although the contribution of the interference drag, important, its expression in the above formula isand hence there will be no scale effect associated
P.575 L	6 th line (↑)	The first equation can be applied	The first equation for the inflow velocity can be applied
P.575 R	5 th line (↓)	 6.4 Consideration from pod resistance tests In order to validate the simple approach for the pod resistance prediction proposed in Section 3.2 and 	6.4 Consideration from pod resistance tests In order to validate the simple approach for the pod resistance prediction proposed in Section 6.3 and
P.575 R	13 th line (\downarrow)	The results of a puller type, are compared with the predicted ones	The results of a puller type, are compared with the predicted ones

Proceedings of 25th ITTC - Volume III

1

		based on Section 3.2,	based on Section 6.3,
P.577 R	14 th line (↑) and 11 th line (↑)	As stated in Section 3, these are summarised in Table 6.3. In order to comparemethods included previously in Table 6.3, the propulsor	As stated in Section 3, these are summarised in Table 6.1 . In order to comparemethods included previously in Table 6.1 , the propulsor
P.580 R	1^{st} line (\downarrow)	CFD to the pod case shown in Tables 4 and 6.5. The extrapolation procedure	CFD to the pod case shown in Tables 6.2 and 6.4 The extrapolation procedure
P.582 R	5 th line (↑)	Podded Propeller Open Water Test Especially, the answers to the questionnaire about the method to fix the POD dynamometer have wide variety	Podded Propeller Open Water Test Especially, the answers to the questionnaire about the method to fix the pod dynamometer have wide variety
P.586	8 th line (↓)	8. REVIEW AND ANALYSIS OF CAVITATION BEHAVIOUR OF PODDED PROPUSORS UNDER THE EFFECT OF POD STEERING ANGLE	8 REVIEW AND ANALYSIS OF CAVITATION BEHAVIOUR OF PODDED PROPULSORS UNDER THE EFFECT OF POD STEERING ANGLE
P.599 L	7 th line (↓)	 10. TECHNICAL CONCLUSIONS (2) A lot of complex systemhas appeared and they are not deeply studied so far 	 11. TECHNICAL CONCLUSIONS (2) A lot of complex systemhas appeared but the methods to test and analyse them are not deeply studied so far
P.599 L	12 th line (↓) 13 th line (↓) and 15 th line (↓)	10. TECHNICAL CONCLUSIONS (3) A pod performance at off design condition or important to affect on not only cavutation and vbration but also fuel consumption. Tjere are many papers mentioned above cavitation and vibrations at pod steering conditions however, it is also important	 10. TECHNICAL CONCLUSIONS (3) A pod performance at off design condition or important to affect on not only cavitation and vibration but also fuel consumption. There are many papers mentioned above cavitation and vibrations at pod steering conditions. However, it is also important
P.599 L	18 th line (↓) and 19 th line (↓)	 10. TECHNICAL CONCLUSIONS (4) CFD becaomes very strong tool now to evaluater the scale effect of pod housing drag and extrapolation method. 	 10. TECHNICAL CONCLUSIONS (4) CFD becomes very strong tool now to evaluate the scale effect of pod housing drag and extrapolation method.

841

AX m

h