

ICE Committees and ice related work at ITTC a short review

Harri Soininen, VTT

25th International Towing Tank Conference, 14–20 September 2008, Fukuoka

The early years

- The first time the heading ice emerges on the ITTC proceeding is Ottawa 1975, 14th ITTC – a group discussion: "Testing in Ice"
- A "Panel of Testing in Ice" was established for the 15th ITTC and it gave its first report at the Hague 1978
- Ice work within ITTC has always been the matter of just few interested parties – the community is small

Areas of consideration (15th ITTC, the Hague 1978)

Laboratory tests

- Model material
 - similarity
 - preparation
 - properties
- Modeling environment
 - level ice
 - ridged ice
 - ice under pressure
 - broken channel ice
 - floe conditions

Areas of consideration (15th ITTC, the Hague 1978)

Laboratory tests

- Testing procedures
 - Towing
 - Self-propelled
 - Manoeuvring
- Analysis
 - Presentation
 - Format
 - » recommended standardized resistance equation
 - » units and symbols
 - Method and non-dimensional parameters

Areas of consideration (15th ITTC the Hague 1978)

Full scale tests

- Ice
 - Properties
 - Conditions
- Testing procedure
 - Continuous mode
 - Non-continuous mode
 - Manoeuvring

Areas of consideration (15th ITTC the Hague 1978)

Full scale tests

- Ship performance measurements
 - Trial
 - Voyage
- Analysis
 - Presentation
 - Format
 - » Recommended standardized resistance equation
 - » Units and symbols

Model-full scale correlation

Work after the Hague, 15th ITTC

- 16th ITTC, Leningrad
 - Friction
 - Model ice properties, elasticity/strength
 - Comparison of tests performed for an LNG-carrier at four basins (30% difference in speed predictions)
 - Preparations for comparative tests with a R-class icebreaker model
 - Word offshore emerging
 - List of symbols
 - Theoretical work
- 17th ITTC, Gothenburg
 - R-class comparative tests results –Power vs speed 20-30% differencies
 - Friction
 - Ridges
 - Propulsion tests

Work after Gothenburg, 17th ITTC

- 18th ITTC, Kobe
 - More tests of R-class icebreaker
 - Friction
 - Offshore
- 19th ITTC, Madrid
 - Friction
 - Model ice properties
 - Propulsion tests in ice
 - Offshore structures, comparative tests with a cylindrical structure initiated
 - R-class model some re-analysis
- 20th ITTC, San Fransisco
 - Analysis of cylinder tests
 - Recommended methods for ice properties tests for level ice
 - Ice load calculation methods
 - Model propulsion tests in ice

Work after San Fransisco, 20th ITTC

- 21st ITTC, Trondheim
 - Recommended procedures for tests in ice
 - Parameters to be measured in various test types
 - Recommendations for ship trials in ice
 - Comparative cylinder tests, some reanalysis
 - **Propeller/ice interaction tests**
- 22nd ITTC Seul&Shanghai
 - Model ice properties measurements
 - Questionnaires: deformed ice tests, offshore structure tests
- 23rd ITTC, Venice
 - 3 procedures reviewed: ice model tests in general, resistance testing in level ice, model ice measurements,
 - Uncertainty analysis in ice model testing
 - A short discussion on iceberg impact tests
- 24th ITTC, Edinburgh
 - Umcertainty analysis in ice model testing
 - Numerical methods, questionnaire
 - Remote sensing of sea ice

Greatest achievments

- R-class comparative tests
- Cylindrical offshore structure comparative tests
- The three procedures (especially methods for measuring model ice properties)

Committee memberships

- The ice community is has alwasys been quite small
- At its maximum 13 institutes responded to some questionnaire regarding methods applied in offshore structure testing
- The Committee membership has often been a kind of a hobby of some interested individuals.
- In the 70⁻ ies and 80⁻ ies some strong individuals within the field dominated the work.
- The 23 rd ITTC saw a collapse in the committee mebership, just four persons, five persons at 24th and 25th

Work still to be performed

- Scale effect is not quite undestood the model tests are performed with a friction factor 0.05 between the hull and ice, in full scale the factor is 0.10-0.15
- The tests in broken ice are not standardised (speed in broken ice is an important information in practice) –modelling of broken ice mass in fairways is not well covered.
- Modelling ridge mass and accordingly tests in ridges are not very well covered
- The dynamics of level ice breaking in thin ice should be better understood –the achievable speed in thin ice is in practice an important information
- More understanding of effects of model ice properties to the ice failure modes against offshore structures

Conclusion

- The greatest achievments:
 - R-class comparative test
 - Cylindrical offshore structure comparative tests
 - The three procedures (especially methods for measuring model ice properties)
- A lot to do still:
 - Friction
 - Propulsion tests
 - Tests in deformed ice
- Navigation in ice infested waters and offsore activities in polar regions are a growing trend (global warming may accelerate this development) - for the ice community to be scinetifically credible work should be done within ITTC