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Uncertainty Analysis in EFD, Uncertainty Assessment Methodology 
 
 

1 PURPOSE OF PROCEDURE 
 
To provide a methodology for estimating the 
uncertainty in an experimental result at a 95% 
confidence level. 
 
 
2 UNCERTAINTY ASSESSMENT 

METHODOLOGY 
 

The methodology for estimating the uncer-
tainties in measurements, and in the experi-
mental results calculated from them, must be 
structured to combine statistical and engineer-
ing concepts in a manner that can be systemati-
cally applied to each step in the data uncer-
tainty assessment determination. In this sec-
tion, an uncertainty analysis methodology is 
presented, and its application in the different 
phases of an experimental program is dis-
cussed. The methodology is based on Chapter 2 
of the AIAA (1995) standard with minor modi-
fications for terminology and figure, table and 
equation numbering. The AIAA methodology 
is based on the material from Coleman & 
Steele (1989, 1st edition and 1999, 2nd edition) 
and is consistent with the most current drafts of 
international guidelines and standards (ISO, 
1992 and 1993a). Definitions of specific terms 
are made as required in the following text, and 
the international vocabulary of metrological 
terms (VIM) is incorporated herein (ISO, 
1993b). 
 
 
 
 

 
 
2.1 Overview 

 
The word accuracy is generally used to in-

dicate the closeness of the agreement between 
an experimentally determined value of a quan-
tity and its true value. Error is the difference 
between the experimentally determined value 
and the truth. Accuracy is said to increase as 
error approaches zero. The true values of stan-
dard measurement quantities (e.g., mass, 
length, time, volts, etc.) generally only reside 
in national standards laboratories. Only in rare 
instances is the true value of a quantity known. 
Thus, one is forced to estimate error, and that 
estimate is called an uncertainty, U. In general, 
the uncertainty of a quantity is a function of the 
value of that quantity. However, it is common 
practice to quote the same value of uncertainty 
for a range of values of the quantity, e.g., per-
cent of full scale of an instrument. In this 
document, all estimates are assumed to be 
made at a 95-percent confidence level, mean-
ing that the true value of the quantity is ex-
pected to be within the ±U interval about the 
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Figure 2.1  Errors in the measurement of a vari-

able X.
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experimentally determined value 95 times out 
of 100. 
 

 
 

Errors can be considered to be composed of two components: a precision (random) com-
ponent and a bias (systematic) component. An 
error is classified as precision if it contributes 
to the scatter of the data; otherwise, it is a bias 
error. It is assumed that corrections have been 
made for all systematic errors whose values are 
known. The remaining bias errors are thus 
equally as likely to be positive as negative. 
 

The effects of such errors on multiple read-
ings of a variable X are illustrated in Fig. 2.1, 
where the bias error is denoted by β. The quali-
tative influence of various combinations of 
large and small precision and bias errors on 
accuracy is depicted in Fig. 2.2. For example, 
an accurate value is one with small bias and 
precision errors (Fig. 2.2a), whereas one may 
have small precision errors but inaccurate val-
ues (Fig. 2.2b) 
 

Estimates of error are meaningful only 
when considered in the context of the process 
leading to the value of the quantity under con-
sideration. In order to identify and quantify 
error sources, two factors must be considered: 
(1) the steps used in the processes to obtain the 
measurement of the quantity, and (2) the envi-
ronment in which the steps were accomplished. 
Each factor influences the outcome. 
 

In nearly all experiments, the measured val-
ues of different quantities are combined using a 
data reduction equation to form some desired 
result. A good example is the experimental 
determination of total resistance coefficient of 
a particular ship model configuration in a 
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Figure 2.2  Measurement error (bias, 
precision, and accuracy). 
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in a towing tank test. Defining total resistance 
coefficient as 

SU5.0
R

C 2
x

T
ρ

=  (2-1) 

one can envision that errors in the values of the 

variables on the right-hand side of Eq. (2-1) 
will cause errors in the experimental result CT. 
 

A more general representation of a data re-
duction equation is 
r = r (X

1
, X

2
, ...,  X

J
 ) (2-2) 

 
where r is the experimental result determined 
from J measured variables Xi. If B and P are 
taken as estimates of the magnitude of bias and 
precision errors, respectively, the experimental 
situation is represented schematically in Fig. 
2.3. 
 

Each of the measurement systems used to 
measure the value of an individual variable Xi 
is influenced by a large number of elemental 
error sources. The effects of these elemental 
errors are manifested as a bias error (estimated 
by Bi) and a precision error (estimated by Pi) in 
the measured values of the variable. These er-
rors in the measured values then propagate 
through the data reduction equation, thereby 
generating the bias and precision errors in the 
experimental result, r. 

 
In performing an uncertainty analysis, it is 

convenient to consider the things which could 
produce errors in a measurement as elements. 
For example, the elements associated with a 
resistance measurement could be the unsteady 
test conditions, transducer, transducer envi-
ronment, signal amplifier, power supply, ana-
log-to-digital converter, and recording device. 

In typical towing tank experimental programs, 
it is generally not cost effective to try to esti-
mate the precision errors of each elemental 
error source. It is usually far more effective to 
estimate the precision of a group of elements 
(such as the output of the entire measurement 
system for XJ − the PJ level in Fig. 2.3). This 
way, the measurement system precision is con-
sidered an element contributing to the total 
uncertainty of resistance measurements. Better 
yet would be to compute directly the precision 
of the result (Pr in Fig. 2.3) if multiple results at 
the same set point are available. 
 

Bias errors, on the other hand, are generally 
easiest to estimate at a smaller elemental level. 

 
 

Figure 2.3  Propagation of errors into an experi-
mental result. 
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For example, the bias caused by transducer set-
up would not be identified in any single set of 
experimental data and thus must be estimated. 
However, this should not be taken to imply that 
bias estimates must be made for each compo-
nent of the measurement system. Each meas-
urement system should be calibrated in as large 
a piece as possible (ideally, an end-to-end cali-
bration under operating conditions). 
 
 

In most situations, such an approach re-
moves the need to estimate the bias errors of 
individual components of measurement sys-
tems. The example in Section 2.4 describes 
ways to estimate the bias and precision of a 
measurement system. 
 

In Section 2.2.2, the methodology for ob-
taining estimates of the precision errors and 
bias errors in the measured variables Xi is pre-
sented, and in Section 2.2.3 the methodology 
for obtaining estimates of the precision errors 
and bias errors in the experimental results de-
termined from the Xi is presented. The meth-
odology discussed in the body of this section 
assumes that error distributions are well-
approximated by the Gaussian distribution, that 
uncertainty estimates are made at a 95-percent 
confidence level using large sample size tech-
niques1, and that all precision errors are uncor-
related. In Annex 2.2-A, a more comprehensive 
(and more complex) methodology (ISO, 1993a) 
that is valid for either small or large sample 
                                                 
1 A discussion of what constitutes “large” sample sizes is given in 
Annex 2.2-A. In most practical towing tank test situations, if the domi-
nant uncertainties are estimated based on 10 or more readings, then use 
of large sample size methodology is justified. (Of course, it is always 
desirable to have as many readings as possible so that a better estimate 
can be made of the true variance of the distribution from which the 
sample readings are taken.) 

sizes and either Gaussian or non-Gaussian error 
distributions is discussed. In Annex 2.2-B, a 
method for identification of outliers in samples 
is presented. 
 
 
2.2 Estimating Uncertainty Components in 

Measured Variables 
 

In this section, the methodology for obtain-
ing estimates of the precision errors and bias 
errors in the measured variables Xi is pre-
sented. The methodology for obtaining esti-
mates of the precision errors and bias errors in 
the experimental results r, computed using 
the measured variables in data reduction equa-
tions of the form of Eq. (2-2), is discussed in 
Section 2.2.3. 
 
 
2.2.1 Definitions 
 

To estimate the magnitude of the precision 
errors in measurements of a variable Xi, a pre-
cision limit Pi is defined. As illustrated in Fig. 
2.4, the ±Pi interval about a measurement of Xi 
is the band within which the (biased) mean 
value, µ, of the variable would fall 95 times out 
of 100 if the experiment were repeated many 
times under the same conditions using the same 
equipment. The precision limit is thus an esti-
mate of the lack of measurement repeatability 
caused by random errors, unsteadiness, inabil-
ity to reset experimental conditions exactly, 
etc.  

To estimate the magnitude of the bias errors 
in measurements of a variable Xi, a bias limit 
Bi is defined. The bias limit is estimated with 
the understanding that the experimenter is 95-
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percent confident that the true value of the bias 
error, if known, would be less than Bi. 

The ±Ui uncertainty interval about the 
measured value of Xi is the band within which 
the experimenter is 95-percent confident the 
true value of the variable lies. The 95-percent 
confidence uncertainty is given by 
 

2
1

)PB(U 2
i

2
ii +=  (2-3) 

 
 
2.2.2 Estimating Precision Limits 
 

The precision limit for a measured variable 
Xi is given by 

Pi = K Si (2-4) 

where K is the coverage factor and equals 2 for 
a 95-percent confidence level, Si is the 
standard deviation of the sample of Ni readings 
of the variable Xi and is defined as 
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and the mean value is defined as 
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=
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An interpretation of the ±Pi interval is 
shown in Fig. 2.4. 
 

The use of K = 2 assumes a large sample 
size and Gaussian error distribution. It is in-
structive to note, however, a 1993 policy state-
ment (Taylor & Kuyatt, 1993) by the U. S. Na-
tional Institute of Standards and Technology 
(NIST): “To be consistent with current interna-

tional practice, the value of K to be used at 
NIST for calculating U is, by convention, K = 

2. Values of K other than 2 are only to be used 
for specific applications dictated by established 
and documented requirements.” A discussion 
of estimating the coverage factor K for “small” 
sample sizes is presented in Annex 2.2-A. Also 
discussed in that annex is the method for com-
bining precision limits estimated at the elemen-
tal error source level (Fig. 2.3). 
 

When a mean (averaged) value of Xi is to 
be used in Eq. (2-2) to determine the result r, 
the appropriate precision limit is the precision 
limit of the mean defined by 

i

i
X N

P
P

i
=  (2-7) 

An interpretation of this precision limit is 
shown in Fig. 2.5. 
 

Two questions that often arise in evaluating 
a precision limit from a sample of Ni readings 
are 
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Figure 2.4  95-percent confidence precision 

limit interval around a single reading of a 
variable Xi. 
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1. What should be done with those data points 
(outliers) that are far from the majority of 

the points in the sample? 
 
2. How should data variations that occur be-

cause of system unsteadiness rather than 
from random error sources be evaluated? 
Procedures for identifying outliers are dis-

cussed in Annex 2.2-B. Note that apparent out-
liers can be due to two basic causes - truly spu-
rious events not connected with the test, or 
phenomenologically relevant data variations 
that, though improbable, occur during the first 
Ni readings taken. Hydrodynamic folklore is 
full of stories about ships which “discovered” 
adverse events during sea trials only to find the 
same event in the model test data which was 
erroneously considered to be an outliers. (Note 
that outliers can only be identified in relation to 
a mean value computed from a number of sam-
ples taken at the same test conditions.) To 
avoid such occurrences, all outliers should be 
examined for relevance to the phenomena be-
ing investigated. 
 

Consideration of the appropriate time inter-
val for collection of the Ni readings is critical if 
appropriate precision limits are to be estimated. 
Consider, for example, an experiment in which 
some of the test variables have a time variation 
such as that shown in Fig. 2.6. If the question 
in the experiment is “what is the result for time 
interval ∆t?”, then M multiple sets of readings 
of the (X1, ... , XJ) taken over that interval can 
be used in the data reduction equation [Eq. (2-
2)] to determine M values of the result r, and 
the mean result and appropriate precision limit 
can be computed using the techniques dis-
cussed below in Section 2.3.2.1. 
 

 
A more typical situation in towing tank test-

ing occurs when the test data are taken at 
“steady” conditions, but the actual variation of 
the Xi's with time is similar to that shown in 
Fig. 2.6. In this case, one typically desires the 
result determined using the data reduction 
equation to be indicative of the value of the 
result over the interval during which several 
complete variations in the variables occur. 
However, it is usually not possible to take 
measurements over that entire interval, as some 
of the variations may have periods of hours or 
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Figure 2.5  95-percent confidence precision 

limit interval around the mean value of a 
sample of readings of variable Xi. 
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Figure 2.6  Variation of a variable Xi with time 

for a “steady” experimental condition. 
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even days and others may not be cyclic at all, 
but vary binarily. In most towing tank tests, 
measurements are taken over a short period 
with the full understanding that the interval for 
variation of some of the variables is much 
longer than the measurement time. In such a 
case, a value of Xi determined over such a rela-
tively short ∆t should be considered as a single 
reading and the appropriate precision limit is 
estimated by Eq. (2-4), not by Eq. (2-7). Note 
that this interpretation holds whether the value 
of Xi is the average of 10, 10

3
 or 10

6
 readings 

taken during ∆t. 
 

One may obtain an appropriate estimate of 
the sample standard deviation [Eq. (2-5)] dur-
ing the testing process by taking repeat data 
provided that all of the error sources contribut-
ing to the total precision are allowed to vary 
during the repeat process. For example, taking 
multiple-samples of data as a function of only 
time while holding all other conditions constant 
merely identifies the precision associated with 
the measurement system and the unsteadiness 
of the test conditions. The precision associated 
with other precision error sources, e.g., repeat-
ing test conditions, model positions, configura-
tion variables, etc, must also be included to 
determine the proper precision limit for the 
variable of interest. 

 
In a given test, the value for the precision 

limit to be assigned to a single reading would 
have to be based on previous information 
about that measurement obtained over the 
appropriate time interval (Steele et al., 
1993). If such previous information consists of 
Ni repeated readings for each of the Xi vari-
ables, the precision limit for each variable can 

be determined from the Ni previous readings 
using Eqs. (2-4) and (2-5). If previous readings 
of a variable over an appropriate interval are 
not available, then the experimenter must esti-
mate a value for Pi using the best information 
available at that time. 

The concept of a precision limit is very use-
ful in all phases of an experimental program. 
For example, in the design phase of an experi-
ment, a 95-percent confidence estimate of the 
“scatter” expected for a given measurement 
based on past experience with the measurement 
technique may be all that is available. In the 
debugging phase of the experiment, the com-
parison of the precision limits estimated in the 
design phase and the precision limits actually 
calculated from multiple samples in the debug-
ging phase allows the experimenter to verify 
that all the factors that influence the precision 
of the measured variables have been properly 
taken into account (Coleman & Steele, 1999). 
 
 
2.2.3 Estimating Bias Limits 

 
A useful approach to estimating the magni-

tude of a bias error is to assume that it belongs 
to some assumed statistical distribution. For 
example, if a thermistor manufacturer specifies 
that 95-percent of samples of a given model are 
within ±0.5°C of the reference resistance-
temperature (R-T) curve supplied, then one 
might assume that the systematic errors (the 
difference between the actual R-T curves of 
various thermistors and the reference curve) 
belong to a normal distribution with a standard 
deviation bT equal to (0.5°C)/2, corresponding 
to a bias limit estimate BT = 2bT (analogous to 
Eq. (2-4)) or 0.5°C. 



ITTC – Recommended 
Procedures 

7.5 – 02 
01 – 01 

Page 9 of 19 

 

Testing and Extrapolation Methods, 
General 

Uncertainty Analysis in EFD 
Uncertainty Assessment Methodology 

Effective Date 
1999 

Revision
00 

 
 
 
 

 

 
More discussion of assumed bias error dis-

tributions is given in Annex 2.2-A. In the fol-
lowing, all bias errors are assumed to be nor-
mally distributed and the coverage factor K = 
2, as before. 

 
One might separate the bias errors which 

influence the measurement of a variable into 
different categories: calibration errors, data 
acquisition errors, data reduction errors, test 
technique errors, etc. Within each category, 
there may be several elemental sources of bias, 
as indicated schematically in Fig. 2.3. For in-
stance, if for the Jth variable, XJ, there are M 
elemental bias errors identified as significant 
and whose bias limits are estimated as 

(BJ)1, (BJ)2, ..., (BJ)M 

then the bias limit for the measurement of XJ is 
calculated as the root-sum-square (RSS) com-
bination of the elemental limits 

2
1

M

1k

2
kJJ )B(B












= ∑

=

 (2-8) 

The elemental bias limits, (Bi)k, must be 
estimated for each variable Xi using the best 
information one has available at the time. In 
the design phase of an experimental program, 
manufacturer's specifications, analytical esti-
mates, and previous experience will typically 
provide the basis for most of the estimates. As 
the experimental program progresses, equip-
ment is assembled, and calibrations are con-
ducted, these estimates can be updated using 
the additional information gained about the 
accuracy of the calibration standards, errors 
associated with calibration process and curvefit 
procedures, and perhaps analytical estimates of 

installation errors (such as wall interference 
effects, sting effects, etc). 

 
As Moffat (1988) suggests, there can be 

additional conceptual bias errors resulting from 
not measuring the variable whose symbol ap-
pears in the data reduction equation. An exam-
ple from a towing tank test would be a velocity 
value measured by the carriage and used as 
“the” ship model velocity in determining CT, 
but there may be cross sectional gradient of the 
velocity (blockage effects) causing the “aver-
age” value to be different. 
 
 
2.3 Estimating Uncertainty Components for 

Experimental Results 
 

In the previous section, the methodology 
for obtaining estimates of the precision errors 
and bias errors in the measured variables Xi 
was discussed. In this section, the methodology 
is presented for obtaining estimates of the 
precision errors and bias errors in the 
experimental results r computed using those 
measured variables in data reduction equations 
of the form of Eq. (2-2). 
 
 
2.3.1 Definitions 
 

To estimate the magnitude of the precision 
component of uncertainty in an experimental 
result, the precision limit of a result Pr is de-
fined. The ±Pr interval about a result is the 
band within which the (biased) mean result, µr, 
would fall 95 percent of the time if the experi-
ment were repeated many times under the same 
conditions using the same equipment. The pre-
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cision limit is representative of the scatter (or 
lack of repeatability) caused by random errors, 
unsteadiness, inability to reset experimental 
conditions exactly, etc. 

 
To estimate the magnitude of the bias com-

ponent of uncertainty in an experimental result, 
the bias limit of a result Br is defined. The 
bias limit is estimated with the understanding 
that the experimenter is 95-percent confident 
that the true value of the bias error, if known, 
would be less than Br. 

 
The ±Ur uncertainty interval about the re-

sult is the band within which the experimenter 
is 95-percent confident the true value of the 
result lies. The 95-percent confidence uncer-
tainty is defined as 

2
1

)PB(U 2
r

2
rr +=  (2-9) 

 

2.3.2 Propagation of Precision Limits into 
an Experimental Result 

 
 
2.3.2.1 Multiple Tests 
 

If a test is repeated a number of times so 
that multiple results at the same set point are 
available, then the best estimate of the result r 
would be r  where 

∑
=

=
M

1k
krM

1r  (2-10) 

and where M is the number of separate test 
results. The precision limit for this result would 
be P Pr r=  calculated as 

M
KS

P r
r =  (2-11) 

where K is the coverage factor and is taken as 
2, as before. Sr is the standard deviation of the 
sample of M results and is defined as 

2
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r 1M
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 (2-12) 

Obviously, this cannot be computed until mul-
tiple results are obtained. 
 

Also note that the precision limit computed 
is only applicable for those random error 
sources that were “active” during the repeat 
measurements. For example, if the model was 
not disassembled and reassembled between the 
multiple results, then the precision limit calcu-
lated would not account for the fact that the 
model may not be assembled exactly the same 
way every time to represent the full-scale arti-
cle. Further, if the test conditions were not 
changed and then re-established between the 
multiple results, the variability due to resetting 
to a given test condition would not be ac-
counted for. 
 
 
2.3.2.2 Single Test with Single Readings 
 

The often-encountered situation, discussed 
in Section 2.2.2, is when measurements of the 
variables are averaged over a period that is 
small compared to the periods of the factors 
causing variability in the experiment. A proper 
precision limit cannot be calculated from read-
ings taken over such a small time interval. For 
such data, the measurement(s) of a variable Xi 
should be considered a single reading, and the 
precision limit must be estimated based on pre-
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viously determined information (calibration 
data, previous testing in the same facility, pre-
vious testing using similar equipment, etc). 
Once estimates are obtained for the precision 
limits of all of the measured variables, the pre-
cision limit for the result is calculated using 

2
1

J

1i

2
iir )P(P



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


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


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where  
i

i X
r

∂
∂

=θ  (2-14) 

Here the precision limits are assumed to be 
based on large sample sizes. Procedures for 
small sample estimates are discussed in Annex 
2.2-A. Equation (2-13) is an approximate equa-
tion that can be derived (Coleman & Steele, 
1999) using a Taylor series expansion and ne-
glecting all terms higher than first order. 
2.3.2.3 Single Test with Averaged Readings 
 

If a test is performed in such a manner that 
some, but not all, of the Xi's in Eq. (2-2) are 
determined as averages over appropriate time 
periods, then Eq. (2-13) should be used with 
the precision limits for the averaged variables 
being computed from Eq. (2-7). If a test is run 
such that all of the Xi's could be determined as 
averages over appropriate time periods, then 
multiple individual test results can be deter-
mined, and the method of Section 2.3.2.1 
should be used. 
 
 
2.3.3 Propagation of Bias Limits into an 

Experimental Result 
 

When a result is given by 

r = r (X1, X2, ...,  XJ ) (2-15) 

the bias limit of that result is related to the bias 
limits Bi of the measurements of the separate 
variables Xi by 

'
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mnm

J
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2
i

2
i

2
r BB2BB θθ+
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


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



θ= ∑

=

 (2-16) 

where the quantities B’m and B’n are the por-
tions of the bias limits for measurements of 
variables Xm and Xn that arise from the same 
sources and are presumed to be perfectly corre-
lated (Coleman & Steele, 1999), and the bias 
limits Bi are estimates at 95-percent confidence 
of the magnitude of the bias errors in the meas-
urements of the separate variables Xi as previ-
ously discussed. Equation (2-16) is an ap-
proximate equation that can be derived (Cole-
man & Steele, 1999) using a Taylor series ex-
pansion and neglecting all terms higher than 
first order. There is a term similar to the final 
term in Eq. (2-16) for each (m,n) pair of meas-
ured variables whose bias errors are correlated. 

For example, if 

r = r (X1, X2,  X3 ) (2-17) 

and it is possible for portions of the bias limits 
B1, B2, and B3 to arise from the same 
source(s), then 

''''

''
r
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22
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θθ+θθ+

+θθ+θ+θ+θ=  (2-18) 

 
If, for instance, the measurements of X1 and 

X2 are each influenced by 4 elemental error 
sources and sources 2 and 3 are the same for 
both X1 and X2, then 

2
41

2
31

2
21

2
11

2
1 )B()B()B()B(B +++=  (2-19) 
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2
32

2
22

2
12

2
2 )B()B()B()B(B +++=  (2-20) 

and 

32312221
'
2

'
1 )B()B()B()B(BB +=  (2-21) 

Correlated bias errors are those that are not 
independent of each other. It is not unusual for 
the uncertainties in the results of experimental 
programs in the fluid and thermal sciences to 
be influenced by the effects of correlated bias 
errors in the measurements of several of the 
variables. A typical example occurs when dif-
ferent variables are measured using the same 
transducer, such as multiple pressures sequen-
tially ported to and measured with the same 
transducer, or temperatures at different posi-
tions in a flow measured with a single probe 
that is traversed across the flow field. Obvi-
ously, the bias errors in the variables measured 
with the same transducer are not independent 
of one another. Another common example oc-
curs when different variables are measured 
using different transducers, all of which have 
been calibrated against the same standard, a 
situation typical of electronically scanned pres-
sure (ESP) measurement systems. In such a 
case, at least a part of the bias error arising 
from the calibration procedure will be the same 
for each transducer, and thus some of the ele-
mental bias error contributions in the meas-
urements of the variables will be correlated. 
 

A comparative test program is another ob-
vious instance where correlated bias error ef-
fects are of great importance. If a test article is 
tested sequentially at the same free-stream con-
ditions and orientation with and without a con-
figuration change, and the difference in lift 
coefficients is the experimental result, then 
most (if not all) of the elemental errors in the 

measurement of an individual variable will 
arise from the same source in the two tests. 
Note that the axiom “bias errors subtract 
out in comparative tests” is not generally 
correct, even though that is commonly ac-
cepted as a truism. The partial derivatives in 
Eq. (2-16) are evaluated at the particular values 
of the measured variables, some of which are 
different in the two tests in a comparative pro-
gram. Also, the bias limits can be functions of 
the measured value of a variable  this occurs 
when bias limits are of the “% of reading” type 
rather than the “% of full scale” type, for in-
stance. 

 
Depending on the particular experimental 

approach, the effect of correlated bias errors in 
the measurements of different variables can 
lead either to increased or to decreased uncer-
tainty in the final experimental result as com-
pared to the same approach with no correlated 
bias errors. Consider the final term in Eq. (2-
16) - if some bias errors are correlated (B’m 
B’n not equal to zero) and the partial 
derivatives (θm and θn) are of  the same sign, 
the term is positive and Br is increased. On the 
other hand, if some bias errors are correlated 
and the partial derivatives are of opposite 
signs, the term is negative and Br is decreased. 
This observation suggests that the effect of 
correlated bias errors can sometimes be used to 
advantage if the proper strategies are applied in 
planning and designing the experiment - 
sometimes one would want to force correlation 
of bias errors using appropriate calibration 
approaches, sometimes not. 
 

Coleman & Steele (1999) presents a deriva-
tion of the propagation equation for bias errors, 
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including the effects of correlated elemental 
bias sources and discussions of the approxima-
tion of such terms in practical applications. 
 
 
 
2.4 Summary of the Methodology 
 

The uncertainty assessment methodology is 
summarised in Fig. 2.7. For each experimental 
result, the data reduction equation [Eq. (2-2)] 
must be determined. Once this has been done, 

the Xi's that must be considered are known, and 
the sources of uncertainty for each Xi should be 
identified. (Note that a math model for a cor-
rection, such as for blockage or wall interfer-
ence effects, is an Xi whose uncertainty must 
also be considered.) 

Once the sources of uncertainty have been 
identified, their relative significance should be 
established. This is often done using order of 
magnitude estimates of the sources. As a “rule 
of thumb” for a given Xi, those uncertainty 
sources that are smaller that 1/4 or 1/5 of the 
largest sources are usually considered negligi-
ble. Resources can then be concentrated on 
obtaining estimates of those uncertainties of 
most importance. 
 

For each Xi, estimates of the precision limit 
and the bias limit are then made. In most tow-
ing tank tests, it is generally not cost effective 
or necessary to try to estimate precision limits 
at the elemental error source level. It is far 
more effective to estimate the precision of the 
measurement systems (at the Pi level in Fig. 2.3 
and as defined by Eq. (2-4)) or, even better, the 
precision of the mean result as given by Eq. (2-
11) if multiple results at the same set point are 
available. Of course, if one encounters unac-
ceptably large P's, the elemental sources' con-
tributions must be examined to see which need 
to be (or can be) improved. It is generally easi-
est to obtain an estimate of the bias limit for Xi 
by estimating the bias limits of the significant 
elemental sources and using Eq. (2-8). 
 

The precision limit, bias limit, and overall 
uncertainty for the experimental result, r, are 
then found using Eqs. (2-13) [or (2-11)], (2-16) 
and (2-9). Note that the partial derivatives can 
be numerically approximated (using finite dif-
ference techniques, for example) if one prefers 
that to finding them analytically. 

 
 
 

DETERMINE THE DATA REDUCTION EQUATION
r = r(X1,X2, ... , XJ)

IDENTIFY SOURCES OF UNCERTAINTY FOR EACH Xi

ASSESS RELATIVE SIGNIFICANCE OF
UNCERTAINTY SOURCES

(ORDER OF MAGNITUDE ESTIMATES)

CONSIDERING THE SIGNIFICANT SOURCES,
ESTIMATE THE PRECISION AND BIAS LIMITS

FOR EACH Xi 
(e.g. Equations (2-4) and (2-8))

FOR THE EXPERIMENTAL RESULT r,
DETERMINE THE PRECISION AND BIAS

LIMITS AND OVERALL UNCERTAINTY
(e.g. Equations(2-13), (2-16), and (2-9))  

Fig. 2.7  Summary of the uncertainty assess-
ment methodology. 
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2.5 Reporting Uncertainties 
 

For each experimental result, the bias limit, 
precision limit, and overall uncertainty should 
be reported. For situations in which the large 
sample assumption is not applicable, the small 
sample methodology and coverage factor used 
should be reported and discussed. If outliers are 
rejected, the circumstances and rationale used 
in rejecting them should be reported. 

Details of the uncertainty assessments (as 
outlined in Fig. 2.7) should be documented 
either in an appendix to the primary test report 
or in a separate document that can be refer-
enced in the primary test report. 
 
 

ANNEX 2-A: A Comprehensive Uncertainty 
Analysis Methodology 

 
In this Annex, a comprehensive uncertainty 

analysis methodology is presented and dis-
cussed. This methodology is applicable for 
either large or small sample sizes and for either 
Gaussian or non-Gaussian error distributions. 
 

Consider the situation in which the experi-
mental result is determined from 

r = r (X1, X
2
, ...,  X

J
) (2-A-1) 

where the Xi's are the values of the measured 
variables. Then the combined standard 
uncertainty uc (ISO, 1993a) is given by 
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 (2-A-2) 

In Eq. (2-A-2), the Si
2  are the variances of the 

precision error distributions of the Xi, the bi
2  

are the variances of the (assumed) bias error 
distributions of the Xi, the ρSik

 are the correla-
tion coefficients appropriate for the precision 
errors in variables Xi and Xk, the ρbik

 are the 
correlation coefficients appropriate for the bias 
errors in variables Xi and Xk, δik is the Kro-
necker delta defined to equal 1 when i = k and 
0 when i ≠ k, and 

θ
∂

∂i
i

r
X

=  (2-A-3) 

Eq. (2-A-2) is an approximate equation ob-
tained using a Taylor series expansion and ne-
glecting all terms higher than first order. A 
derivation is given in Appendix B of Coleman 
& Steele (1999). No assumptions about type(s) 
of error distributions are made to obtain Eq. (2-
A-2). To obtain an uncertainty Ur at some 
specified confidence level (such as the 95 per-
cent chosen for use in this document) the com-
bined standard uncertainty uc must be multi-
plied by a coverage factor, K, 

Ur = K uc (2-A-4) 

It is in choosing K that assumptions about 
the type(s) of the error distributions must be 
made. 
 

An argument is presented in ISO (1993a) 
that the error distribution of the result, r, in Eq. 
(2-A-1), may often be considered Gaussian 
because of the Central Limit Theorem, even if 
the error distributions of the Xi are not normal. 
In fact, the same argument can be made for 
approximate normality of the error distribu-
tions of the Xi since the errors typically are 
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composed of a combination of errors from a 
number of elemental sources. If it is assumed 
that the error distribution of the result, r, is 
normal, then the value of K for 95-percent cov-
erage corresponds to the 95-percent confidence 
level value (Table 2-A-1) from the t distribu-
tion so that 
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(2-A-5) 

The effective number of degrees of freedom 
νr for determining t is given (approximately) 
by the so-called Welch-Satterthwaite formula 
(ISO, 1993a) as 

( )[ ] ( )[ ]( )∑
=
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where uc is given by Eq. (2-A-2) with all corre-
lation coefficients set equal to zero and with 

νSi = Ni – 1 (2-A-7) 

for the number of degrees of freedom associ-
ated with the Si. For the number of degrees of 
freedom νbi to associate with a non-statistical 
estimate of bi, it is suggested in ISO (1993a) 
that one might use the approximation 
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where the quantity in parenthesis is the relative 
uncertainty of bi. For example, if one thought 
that the estimate of bi was reliable to within ± 
25 percent, then  

Table 2-A-1  The t Distribution*. 
C 

ν 0.900 0.950 0.990 0.995 0.999 

1 6.314 12.706 63.657 127.321 636.619 
2 2.920 4.303 9.925 14.080 31.598 
3 2.353 3.182 5.841 7.453 12.924 
4 2.132 2.776 4.604 5.598 8.610 
5 2.015 2.571 4.032 4.773 6.869 
6 1.963 2.447 3.707 4.317 5.959 
7 1.895 2.365 3.499 4.029 5.408 
8 1.860 2.306 3.355 3.833 5.041 
9 1.833 2.262 3.250 3.690 4.781 
10 1.812 2.228 3.169 3.581 4.587 
11 1.796 2.201 3.106 3.497 4.436 
12 1.782 2.179 3.055 3.428 4.318 
13 1.771 2.160 3.012 3.372 4.221 
14 1.761 2.145 2.977 3.326 4.140 
15 1.753 2.131 2.947 3.286 4.073 
16 1.746 2.120 2.921 3.252 4.015 
17 1.740 2.110 2.898 3.223 3.965 
18 1.734 2.101 2.878 3.197 3.922 
19 1.729 2.093 2.861 3.174 3.883 
20 1.725 2.086 2.845 3.153 3.850 
21 1.721 2.080 2.831 3.135 3.819 
22 1.717 2.074 2.819 3.119 3.792 
23 1.714 2.069 2.807 3.104 3.768 
24 1.711 2.064 2.797 3.090 3.745 
25 1.708 2.060 2.787 3.078 3.725 
26 1.706 2.056 2.779 3.067 3.707 
27 1.703 2.052 2.771 3.057 3.690 
28 1.701 2.048 2.763 3.047 3.674 
29 1.699 2.045 2.756 3.038 3.659 
30 1.697 2.042 2.750 3.030 3.646 
40 1.684 2.021 2.704 2.971 3.551 
60 1.671 2.000 2.660 2.915 3.460 

120 1.658 1.980 2.617 2.860 3.373 
∞ 1.645 1.960 2.576 2.807 3.291 

* Shown are the values of the two-tailed t distribu-
tion for confidence level C and degrees of free-
dom ν. 
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If bi results from the influence of M ele-
mental error sources (bi)k, then 
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=
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M
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i bb  (2-A-10) 

(An analogous equation holds for Si if preci-
sion uncertainties (Si)k are estimated for ele-
mental error sources.) There are several distri-
butions - Gaussian, rectangular and triangular, 
for instance - that might logically be assumed 
for bias errors (ISO, 1993a). For an assumed 
Gaussian distribution, one might estimate the 
95-percent confidence bias limit (Bi)k, make 
the large sample assumption so that t = 2, and 
then 

( )
2
)B(

b ki
ki =  (2-A-11) 

If one estimates that it is equally probable 
for (bi)k to lie anywhere within an interval ±a 
and highly unlikely that it would lie outside 
that range, then a rectangular error distribution 
of width 2a might be assumed and 

( )
3

ab ki =  (2-A-12) 

If one estimates that it is highly unlikely that 
(bi)k would lie outside a range a, but that 
values near the midpoint are more likely than 
near the bounds, then a distribution shaped like 
an isosceles triangle of base 2a might be 
assumed and 
( )

6
ab ki =  (2-A-13) 

In most practical towing tank tests, it seems 
(from an engineering perspective) that the use 
of the preceding equations [(2-A-5) and (2-A-

6)] in this Annex would be excessively and 
unnecessarily complex and would tend to give 
a false sense of the degree of significance of 
the numbers computed using them. In deter-
mining what additional simplifying approxima-
tions can reasonably be made, the following 
factors should be considered. 
 

The propagation equation [(Eq. (2-A-5)] is 
approximate - it is not an exact equation. Un-
avoidable uncertainties are always present in 
estimating the bias uncertainties bi and in esti-
mating their associated degrees of freedom, νbi

. 
The Si are usually estimated based on previ-
ously determined information (since in most 
towing tank tests it is not possible to obtain 
multiple readings of an Xi over an appropriate 
time interval), and the uncertainties associated 
with these Si can be surprisingly large (ISO, 
1993a). For samples of a Gaussian parent 
population with standard deviation σ, 95 out of 
100 determinations of the Si will scatter within 
an interval of ±0.45σ if the Si are determined 
from N=10 readings and within an interval of 
±0.25σ if the Si are determined from N=30 
readings (which has traditionally been consid-
ered a “large” sample). 
 

Considering the 95-percent confidence t ta-
ble (Table 2-A-1), one can see that for νr ≥ 9 
the values of t are within about 13 percent of 
the large sample t-value of 2. This difference is 
relatively insignificant compared with the ef-
fects discussed in the preceding paragraph. For 
most engineering applications, it is proposed 
that Gaussian error distributions and νr ≥ 9 be 
assumed so that t = 2 always. (This could be 
called the “large sample-size assumption”.) 
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This eliminates the need for evaluation of νr 
using Eq. (2-A-6) and the need to evaluate all 
of the νSi

 and νbi
. 

Consideration of Eq. (2-A-6) shows that, 
because of the exponent of 4 in each term, νr is 
most influenced by the number of degrees of 
freedom of the largest of the θiSi or θibi terms. 
If, for example, θ3S3 is dominant then νr ≈ 3 
νS3

 ≥ 9 for N3 ≥ 10 (recalling Eq. (2-A-7)). If, 

on the other hand, θ3b3 is dominant then νr ≈ 3 
νb3

 ≥ 9 when the relative uncertainty in bi is 
about 24 percent or less (recalling Eq. (2-A-8)). 
Therefore, invoking the “large sample-size 
assumption” essentially means that if a θiSi is 
dominant then its Ni ≥ 10 or if a θibi is domi-
nant then the relative uncertainty in that bi is 
about 24 percent or less. If there is no single 
dominant term, but there are M different θiSi 
and θibi that all have the same magnitude and 
of degrees of freedom νa, then νr = Mνa. If 
M=3, for example, νa would only have to be 3 
or greater for νr to be equal to or greater than 9. 
Therefore, t can often legitimately be taken as 
2 for estimating the uncertainty in a result 
determined from several measured variables 
even when the degrees of freedom associated 
with the measured variables are very small. 
 

If the “large sample-size assumption” is 
made so that t = 2, then from Eq. (2-A-5) the 
95-percent confidence expression for Ur be-
comes 
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Remembering the definition of the precision 
limit Pr [Eq. (2-4)], this equation can be written 
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If it is additionally assumed that precision er-
rors in different variables are uncorrelated and 
if the correlated bias term is approximated as 
discussed in Section 2.3.3, then Eq. (2-A-15) 
reduces to those equations presented in the 
body of this section. 
 

The methodology discussed in the body of 
this section is recommended for use in practical 
towing tank testing situations unless there are 
other overriding considerations which require 
the application of (the still approximate) Equa-
tions (2-A-5) and (2-A-6). 
 
 
ANNEX 2-B: Identification and Elimination 
of Outliers in Samples  
 

All experimental endeavours can produce 
data points which appear to be spurious. Such 
points (outliers) may be caused by intermittent 
malfunctions of the instrumentation or a physi-
cal perturbation not connected with the ex-
periment. For example, a calibration of a pres-
sure measurement system was recently dis-
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turbed by random spikes in the data caused by 
a crane being operated in an adjacent room. 
Obviously, errors of this type should not be 
included in the uncertainty estimates, assuming 
that crane operation would be prohibited during 
a test. When such points occur, they should be 
removed from the data if the “best” estimate of 
the sample standard deviation is desired. Thus, 
all data should be inspected for spurious data 
points. Identification criteria should be based 
on engineering analysis of the instrumentation, 
the physics of the phenomena, theoretical pre-
dictions, and/or the history of similar experi-
ments. To ease the burden of examining large 
amounts of data, computerised routines are 
available to scan data sets and flag suspected 
outliers. The suspected outliers should then be 
analysed with respect to the data set in order to 
make a judgement about their quality. 
 

The effect of outliers (if they are not re-
jected) is to increase the estimate of the preci-
sion limit of the variable. One of the several 
techniques in common usage for determining if 
spurious data points are outliers is Chauvenet's 
criterion (Coleman & Steele, 1999). 
 

Consider a sample of N measurements of a 
variable X with a sample standard deviation of 
SX. The outlier tests are performed as follows.  
 

Compute 
XXkk −=δ  (2-B-1) 

Determine τ from Table 2-B-1. If 

Xk Sτ≥δ  (2-B-2) 

then Xk meets the criterion and is identified as 
an outlier. 
 

In general, removing an outlier from the 
data sample will have a relatively small effect 
on the mean value, but can have a large effect 
on the sample standard deviation. There is a 
continuing controversy over whether the crite-
rion should be applied only once, or more than 
once, to a given data set. Rejection of outliers 
should be documented and reported. 
 

A curve-fit equation for τ using Chauvenet's 
criterion for N < 833,333 is 

( )[ ]τ =
=
∑A Ni
i

i

1

5

ln  (2-B-3) 

where 
A0 = 0.720185, A1 = 0.674947, 
A2 = −0.0771831, A3 = 0.00733435, 
A4 = −0.00040635, and A5 = 0.00000916028. 
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