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Abstract

The purpose of this guide is to provide a general overview of Verification, Validation, and Uncer-
tainty Assessment (VVUA) as it relates to CFD for the ITTC. This guide seeks to provide a current
set of definitions of the different aspects of the field of VVUA, and to provide references to several
published methods that have shown to be practically useful for ITTC members to conduct VVUA
analysis.  Verification is the process that establishes the mathematical correctness of a computational
model with respect to reference values that are used for comparison.  Validation intends to identify
modelling errors, the difference between the mathematical model and reality, which inevitably re-
quires comparison with experimental data.  Uncertainty assessment intends to quantify mathemati-
cally the uncertainties that arise from all sources present in calculation results, or collection of exper-
imental data.  This guide provides two approaches for VVUA along with step-by-step examples and
discussions on practical issues such as the use of unstructured grids and wall functions.
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Uncertainty Analysis in CFD, Verification and Validation Methodology and Pro-
cedures

1. PURPOSE OF PROCEDURE

The purpose of this guide is to provide a gen-
eral overview of Verification, Validation, and
Uncertainty Assessment (VVUA) as it relates to
CFD for the ITTC. Here CFD is defined as so-
lutions to the Reynolds-averaged Navier-Stokes
(RANS) equations.

A companion guide 7.5-03-01-02 Quality
Assurance in Ship CFD Application provides a
Best Practice Guideline (BPG), quality assess-
ment of the BPG methodology, and demonstra-
tion of quality, which can support the use of the
present guide in practical ship CFD applica-
tions.

2. VERIFICATION AND VALIDA-
TION METHODOLOGY

It is important to conduct uncertainty analy-
sis to assess the accuracy of CFD predictions.
There are several decades of research into dif-
ferent theories and methodologies for perform-
ing VVUA, and the historical developments of
VVUA closely follow the development of the
field of CFD itself. This guide does not cover
the entire history of VVUA, nor does it summa-
rize a single procedure that is suitable for the full
range of calculations that are conducted by
ITTC members. What this guide seeks to pro-
vide is a current set of definitions of the different
aspects of the field of VVUA, and to provide
references to several published methods that
have shown to be practically useful for ITTC
members to conduct VVUA analysis.

2.1 Definitions

In the ITTC context the goal of VVUA in
CFD is to quantify numerical and modelling er-
rors for practical calculations of complex turbu-
lent flows. There has been a continual evolution
of terminology as the field has advanced over
the last several decades, and currently the pro-
cess of VVUA can be described by three differ-
ent activities.

1. Verification

2. Validation

3. Uncertainty Assessment

The following definitions of these activities
are based directly on the International Standard
of the American Society of Mechanical Engi-
neers: VVUQ 1 – 2022.

2.1.1 Verification

Verification is the process that establishes
the mathematical correctness of a computational
model with respect to reference values that are
used for comparison. Verification can be cate-
gorized as either code verification or solution
verification.

Code Verification intends to verify that a
given code correctly solves the equations of the
model (RANS) that it contains. Thus, it com-
pares the computational model to the mathemat-
ical model. Few exact (closed-form or analyti-
cal) solutions are available for assessing the ac-
curacy of the computational results, so the
method of manufactured solutions is commonly
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used to provide a reference solution. Code veri-
fication is regarded as the responsibility of the
code developer and is not a typical activity for
ITTC members.

Solution Verification intends to estimate
the error (which is usually impossible to deter-
mine for lack of the truth) or uncertainty (which
is an estimate of the error) of a given calculation
for which in general the exact solution is not
known. The same computational model can pro-
duce different solutions due to the error sources
of mesh discretization, number of iterations of
the nonlinear or linear equations, and computer
precision. Solution verification may need to be
performed for each use of a computational
model as the solution verification results may
vary with changes to initial conditions, bound-
ary conditions, gradients of the dependent vari-
ables, and modeling options.

2.1.2 Validation

Validation intends to identify modelling er-
rors, the difference between the mathematical
model (solution from simulation) and reality
(physical truth), which inevitably requires com-
parisons with experimental data. It requires the
estimation of experimental, numerical, and in-
put uncertainties.

2.1.3 Uncertainty Assessment

Uncertainty Assessment (UA) intends to
quantify mathematically the uncertainties that
arise from all sources present in calculation re-
sults, or collection of experimental data. It is the
process of generating and applying mathemati-
cal models to provide a measure of uncertainty
in the empirical data or simulation results. There
are two fundamental parts of UA, the error, and
the uncertainty.

Error is the difference between a measured
or a calculated value and the true value. Since
the true value is rarely known, it is usually not
possible to quantify error directly.

Uncertainty is the recognition of the imper-
fect knowledge about a system or quantity of in-
terest.  The recognition of uncertainty leads to
the need to estimate the error, which is a primary
goal of performing VV and UA.

3. VERIFICATION PROCEDURES

In steady CFD computations solution verifi-
cation is performed by estimating the numerical
uncertainty from solutions obtained on system-
atically refined grids. The error is estimated with
power series expansions as a function of the typ-
ical cell size (Richardson extrapolation or RE).
The error estimate from RE is converted to an
uncertainty by multiplying it with a factor of
safety to account for any complexities that are
neglected in the conceptualization of Richard-
son extrapolation.

The literature on uncertainty analysis is vast,
and it is recommended to consider the following
two procedures that have shown to be useful to
perform uncertainty analysis for ship CFD com-
putations. These will be referred to as

1. The method of Stern et al. (Xing and
Stern, 2010)

2. The method of Eça and Hoekstra. (Eça
and Hoekstra, 2014)

Both methods use an asymptotic expansion
of the simulation result that depends on the step
size ℎ as

𝑆 = 𝑆0 + 𝛼ℎ𝑝 + 𝑜(ℎ𝑝) (1)

where, 𝑆 is simulation result, 𝑆0 is the exact so-
lution, and the coefficient 𝛼 and the exponent 𝑝
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are determined by using a set of different grids
solving the same problem of interest.  Then, the
numerical discretization error is estimated as

𝛿 = 𝑆 − 𝑆0 (2)

The method of Stern et al. determines the nu-
merical uncertainty from solutions on three
grids when only the first leading term of Eq. (1)
is considered.

The method of Eça and Hoekstra determines
the numerical uncertainty from solutions on at
least four grids. Regardless of the number of
grids, there is scatter in the numerical data due
to a number of sources. To minimize the influ-
ence of the scatter the method Eça and Hoekstra
uses a least-square fit through the data. Another
advantage of using a fit to four or more grids is
that the quality of the fit can be measured and
used as an indicator of the accuracy of the error
model.

Careful considerations on convergence con-
ditions should be given while using the above
methods.  For a set of three solutions 𝑆𝑖, where
𝑖 = 1, 2, and 3 representing the fine, medium,
and coarse grid, respectively, the changes be-
tween the medium-fine 𝜀21 = 𝑆2 − 𝑆1 solutions
and the coarse-medium 𝜀32 = 𝑆3 − 𝑆2 solutions
are used to define a convergence ratio as

𝑅 = 𝜀21 𝜀32⁄ (3)

Depending on the sign and magnitude of 𝑅, the
solutions exhibit one of the following four be-
haviours with the grid refinement:

i. Monotonic convergence for 0 < 𝑅 < 1
ii. Monotonic divergence for 𝑅 > 1

iii. Oscillatory convergence for−1 < 𝑅 < 0
iv. Oscillatory divergence for 𝑅 < −1

For the monotonic convergence condition, both
the method of Stern et al. and the method of Eca

and Hoekstra work equally well.  However, each
method deals the other convergence conditions
quite differently. The method of Stern et al.
states that errors and uncertainties cannot be es-
timated for the monotonic and oscillatory diver-
gence conditions but uses a certain error treat-
ment method for the oscillatory convergence
condition.  Herein, only the monotonic conver-
gence case of the method of Stern et al. is intro-
duced and the readers are referred to Stern et al.
(2006) for the other convergence cases. On the
other hand, the method of Eca and Hoekstra
states that for “practical problems” of complex
geometries and complex equations data can be
noisy with scatters in them and uses error esti-
mators for the convergence conditions (ii) – (iv).

3.1 The method of Stern et al.

For monotonic convergence condition, gen-
eralized Richardson Extrapolation (RE) is used
to estimate the error 𝛿 in Eq. (2). The error is
expanded in a power series expansion of grid
spacing Δ𝑥 corresponding to the step size ℎ in
Eq. (1). The accuracy of the estimate depends on
how many terms are retained in the expansion,
the magnitude (importance) of the higher-order
terms, and the validity of the assumptions made
in RE theory.

With solutions on three different grids, only
the leading term can be estimated, which pro-
vides direct estimates for order of accuracy and
error as

𝑝 = ln(𝜀32/𝜀21)
ln(𝑟)

(4)

𝛿𝑅𝐸 = 𝜀21
𝑟𝑝−1

(5)

A factor of safety approach (Roache, 1998)
can be used to define the uncertainty𝑈 where an
error estimate from RE is multiplied by a factor
of safety 𝐹𝑆 to bound simulation error as
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𝑈𝐹𝑆 = 𝐹𝑆 ⋅ |𝛿𝑅𝐸| (6)

Xing and Stern (2010) define a distance met-
ric 𝑃 as the ratio of the estimated order of accu-
racy, 𝑝𝑅𝐸  to the theoretical order of accuracy,
𝑝𝑡ℎ  as

𝑃 = 𝑝𝑅𝐸 𝑝𝑡ℎ⁄ (7)

and derived 𝐹𝑆 as functions of 𝑃 as

𝐹𝑆(𝑃) = ൜2.45− 0.85𝑃, 0 < 𝑃 ≤ 1
16.4𝑃 − 14.8, 𝑃 > 1 (8)

determined using a statistical analysis for a large
number of samples based on analytical or nu-
merical benchmarks.

3.2 The method of Eça and Hoekstra

To account for scatter in the numerical solu-
tions, common in complex flows with relatively
coarse grids, or where the use of unstructured
grids leads to variability in the grids, the error
can be estimated using a Least Squares Root
method (LSR) by Eça and Hoekstra (2014).

This requires solutions on at least four dif-
ferent grids to perform a curve fit of

𝜙𝑖 = 𝜙0 + 𝛼ℎ𝑖
𝑝 (9)

in the least-squares sense to determine the esti-
mate of the exact solution 𝜙0, the coefficient 𝛼,
and the observed order of accuracy 𝑝.  Then, an
error estimate can be written as follows.

𝛿𝑅𝐸 = 𝜙𝑖 −𝜙0 = 𝛼ℎ𝑖
𝑝 (10)

Since p is strongly influenced by the amount
of scatter in the solutions, such that it may be
larger than the theoretical order of accuracy,
leading to an underestimate of the error, three
alternative error estimates are provided, also
found by curve fitting.

𝛿1 = 𝛼ℎ𝑖 (11)

𝛿2 = 𝛼ℎ𝑖
2 (12)

𝛿12 = 𝛼1ℎ𝑖 + 𝛼2ℎ𝑖
2 (13)

in Eqns. (11) and (12), the subscript i is the grid
number from 1 to the number of grids, and ℎ𝑖is
the grid (or the time-step) size.

Appendices A and B in Eça and Hoekstra
(2014) provide the Least-Squares solutions and
the standard deviation 𝜎 of the curve-fits using
Eqns. (11) – (13), both with and without using
weights.

The uncertainty estimation is determined by
first by defining a data range parameter to judge
the quality of the data fit as

Δ𝜙 = (𝜙𝑖)max−(𝜙𝑖)min
൫𝑛𝑔൯−1

(14)

For 𝜎 < Δ𝜙,

𝑈(𝜙𝑖) = 𝐹𝑆𝜖𝜙 + 𝜎 + |𝜙𝑖 −𝜙fit| (15)

For 𝜎  Δ𝜙,

𝑈(𝜙𝑖) = 3 𝜎
Δ𝜙
൫𝜖𝜙 + 𝜎 + |𝜙𝑖 −𝜙fit|൯ (16)

The error estimate 𝜖𝜙 in Eqns. (15) and (16)
is chosen based on the observed order of accu-
racy, p. For 0.5 ≤ p ≤ 2, 𝜖𝜙 ≅ 𝛿𝑅𝐸 from Eq. (10)
is used. For p > 2, between 𝛿1 and 𝛿2, the one
with the smaller 𝜎 is used as 𝜖𝜙, and for p < 0.5,
the one with the smallest 𝜎 is chosen among 𝛿1,
𝛿2, and 𝛿12.

The factor of safety 𝐹𝑆 in Eq. (15) is chosen
based on both the observed order of accuracy 𝑝
and the data range parameter Δ𝜙.  For 0.5  𝑝 <
2.1 and if 𝜎 < Δ𝜙, 𝐹𝑆 = 1.25 is used, whereas 𝐹𝑆
= 3 is used otherwise.
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3.3 Practical issues

The practical issues of iterative conver-
gence, unstructured grids, and wall functions are
considered in this section.

Iterative and parameter convergence studies
are to be conducted using multiple solutions (at
least 3) with systematic parameter refinement by
varying the ith input parameter Δ𝑥𝑖 (or ℎ𝑖), while
holding all other parameters constant. Richard-
son Extrapolation assumes that input parameters
are selected such that the finest resolution corre-
sponds to range where the leading-order error
term in the Taylor series dominates all other
terms, and this is also called the asymptotic
range. In practice this it is rarely possible to
build a sufficiently fine grid such that one can
prove that the solution is in the asymptotic
range. This means additional ad hoc measures
are required to adapt RE for application to ship
CFD, hence the different methods of Xing and
Stern (2010) and Eça and Hoekstra (2014),
among others.

Another important consideration is that
nearly all ship CFD grids have stretching in the
spatial discretization, and many grids are un-
structured.  RE is most clearly applied for uni-
form structured grids, which are employed in
only the rarest cases for ship CFD.  In order to
account for the stretching and unstructured na-
ture of most CFD grids in application, it is im-
portant to generate the set of grids that are re-
fined with a systematic relationship between the
different grids. This means the local ratio of the
grid size between any two grids is nearly con-
stant throughout space.  If this is done, then a
single grid metric can be calculated to represent
the grid spacing for each grid.  For example, the
grid spacing for a grid with three spatial dimen-
sions can be calculated as the cube root of the
ratio of the volume of the entire grid divided by
the number of cells in the grid.

Additionally, a uniform parameter refine-
ment ratio

𝑟 = Δ𝑥𝑖,2
Δ𝑥𝑖,1

= Δ𝑥𝑖,3
Δ𝑥𝑖,2

= Δ𝑥𝑖,𝑚
Δ𝑥𝑖,𝑚−1

(17)

between solutions is assumed for presentation
purposes, but not required. Iterative errors must
be accurately estimated or negligible in compar-
ison to errors due to input parameters before ac-
curate convergence studies can be conducted.

Careful consideration should be given to se-
lection of uniform parameter refinement ratio.
The most appropriate values for industrial CFD
are not yet fully established. Small values (i.e.,
very close to one) are undesirable since solution
changes will be small and sensitivity to input pa-
rameter may be difficult to identify compared to
iterative errors. Large values alleviate this prob-
lem; however, they also may be undesirable
since the finest step size may be prohibitively
small (i.e., require many steps) if the coarsest
step size is designed for sufficient resolution
such that similar physics are resolved for all m
solutions. Also, solution changes for the finest
step size may be difficult to identify compared
to iterative errors since iterative convergence is
more difficult for small step size. Another issue
is that for parameter refinement ratio other than
𝑟 = 2, interpolation to a common location is re-
quired to compute solution changes, which in-
troduces interpolation errors. Roache (1998)
discusses methods for evaluating interpolation
errors. However, for industrial CFD, 𝑟 = 2 is
too large in most cases. A good alternative may
be 𝑟 = √2, as it provides fairly large parameter
refinement ratio and at least enables prolonga-
tion of the coarse-parameter solution as an ini-
tial guess for the fine-parameter solution.

A final practical issue that requires attention is
the challenge of refining the grid in the near-
wall region.  If a wall-resolved grid is used for
the finest grid, then systematic refinement can
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be pursued without any further consideration.
On the other hand, wall-functions are often
used, especially for full-scale Reynolds number
simulations. In this case, as the near-wall mesh
is refined, the wall-function introduces an error
that is fundamentally different than the discreti-
zation error, and often its role is significant and
can confound the uncertainty assessment activ-
ity.  It is encouraged to in the least ensure that
the multiple sets of grids used in the UA activity
are in logarithmic regime.

To summarize the practical issues.

1. Iterative convergence should be monitored
and users should ensure that it is negligi-
bly small.

2. A refinement ratio should be chosen as
large as possible that allows for a mean-
ingful solution on the coarse grid and a
fine solution that is computationally af-
fordable.

3. On unstructured grids care should be taken
to keep the local refinement ratio constant
throughout the domain.

4. When wall functions are used it is best to
keep the near wall spacing constant for the
set of grids used in the VVUA study.

3.4 Verification Examples

Steady-state simulations performed for the
JBC and KCS cargo/container ship (Starke et
al., 2024) are used to demonstrate the use of the
two different verification approaches introduced
in Sections 3.1 and 3.2.

The JBC simulations were done by the Ship-
building Research Centre of Japan (SRCJ).
Simulation conditions for the calculations are
Froude number Fr = 0.14 and Reynolds number
Re = 7.4  106.

Figure 1. Grid meshes used for JBC simulations (Grid 1,
Grid 3, and Grid 5 from the top).

Figure 1 shows a few of example plots of the
grid mesh. The grid topology is an OO-type
structured mesh.  The outer boundary shape is a
hemispherical ellipsoid with upper-lower sym-
metric boundary conditions applied by the as-
sumption of a double-model flow. Grid studies
were conducted using a total of five grids (ng =
5), with the grid refinement ratio 𝑟 = √24 .

Table 1. Grid data and the outcomes of the JBC simula-
tions.

Grid,
𝑖

Total number
of points, 𝑁𝑖

𝑟𝑖 CFM (e-3) CTM (e-3)

1 25,088,000 1.000 3.2148 4.0957
2 15,482,880 1.175 3.2116 4.0991
3 9,216,000 1.396 3.2075 4.1015
4 5,483,520 1.660 3.2021 4.1060
5 3,354,624 1.956 3.1945 4.1099
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Figure 2. JBC simulation results.

Table 1 presents the grid data and the simu-
lation results. The variable selected for the pre-
sent verification are the friction resistance coef-
ficient CFM and the total resistance coefficient
CTM. Figure 2 shows the simulation outcomes as
functions of the grid refinement ratio 𝑟𝑖.  Here,
𝑟𝑖 is the relative grid spacing with respect to the
spacing of the finest grid (i.e., the Grid 1) and is
defined as

𝑟𝑖 = ඥ𝑁1/𝑁𝑖
3 (18)

Note that this 𝑟𝑖 is different from the uniform
refinement ratio 𝑟 = √24  mentioned above (see
Eq. (17) for its definition).

First, the method of Stern et al. is used for a
set of three grids, Grids 1, 3, and 5. The grid re-
finement ratio is 𝑟 = ൫√24 ൯

2
= √2 for this grid-

triplet. To check the convergence condition of
this data set, the convergence ratio is calculated
per Eq. (3) as

𝑅 =
3.2075− 3.2148
3.1945− 3.2075 = 0.567

Since 0 < 𝑅 < 1, the data converges mono-
tonically. The observed order of accuracy 𝑝 and

the error 𝛿𝑅𝐸 are calculated using Eq. (4) and Eq.
(5), respectively as

𝑝 =
ln(−0.0130 −0.0074⁄ )

ln√2
= 1.69

𝛿𝑅𝐸 =
−0.0074

൫√2൯
1.69

− 1
= −0.00964

Next, the distance metric 𝑃 in Eq. (7) and a
factor of safety 𝐹𝑆 in Eq. (8) are calculated as

𝑃 = 1.69 2⁄ = 0.845

𝐹𝑆 = 2.45 − 0.85 × 0.845 = 1.73

where, the theoretical order of accuracy 𝑝th = 2
is used for the 𝑃 calculation.  Lastly, the uncer-
tainty is estimated by using Eq. (6) as

𝑈𝐹𝑆 = 1.73 × |−0.00964| = 0.0167

corresponding to 0.52% of CFM of Grid 1. The
uncertainty for CTM can be estimated in a similar
way.

Next, the method of Eça and Hoekstra is
used. Since this method requires a set of four or
more grids (without an upper limit), all the 5
grids are used. Table 3 presents a summary of
the assessment results.

For 𝜙 = CFM, first Eq. (9) is solved for 𝜙0,
𝛼, and 𝑝 using the least-squares method. Here,
Eq. (9) is rewritten as

𝜙𝑖 = 𝜙0 + 𝛼∗𝑟𝑖
𝑝 (19)

where, 𝛼∗ = 𝛼 ⋅ ℎ1
𝑝 and 𝑟𝑖 = ℎ𝑖 ℎ1⁄  is equivalent

to Eq. (18). The solution gives 𝑝 = 1.717 that
satisfies 0.5  𝑝  2, thus 𝛿𝑅𝐸 in Eq. (10) is se-
lected as the error estimator 𝜖𝜙, with 𝛼 and ℎ𝑖
replaced with 𝛼∗ and 𝑟1, respectively,
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𝜖𝜙(𝜙1) = |−0.0093 × (1)1.717| = 0.0093

Table 2. Uncertainty assessment results by using the
method of Stern et al. for JBC.

Variable CFM CTM

𝑅 0.567 0.688
𝜀21 -0.0074 0.0058
𝜀32 -0.0130 0.0084
𝑝 1.69 1.12
𝛿𝑅𝐸 -0.00964 0.01274
𝑝th 2 2
𝑃 0.845 0.558
𝐹𝑆 1.73 1.98
𝑈𝐹𝑆 0.0167 0.0252

𝑈𝐹𝑆(%𝑆1) 0.52 0.61

Table 3. Uncertainty assessment results by using the
method of Eça and Hoekstra for JBC.

Variable CFM CTM

𝜙0 3.2240 4.0748
𝛼∗ -0.0093 0.0225
𝑝 1.717 0.7216
𝜎 0.0001 0.0002
Δ𝜙 0.0051 0.0036

𝜖𝜙(𝜙1) -0.0093 0.0225
𝐹𝑆 1.25 1.25

𝑈𝜙(𝜙1) 0.0118 0.0286
𝑈𝜙(%𝜙1) 0.37 0.70

The data range parameter is calculated as

Δ𝜙 =
3.2148− 3.1945

5 − 1 = 0.0051

The safety factor is chosen as 𝐹𝑆 = 1.25 since 0.5
 𝑝 < 2.1 and 𝜎 < Δ𝜙.  Lastly, the uncertainty is
calculated using Eq. (15), again since 𝜎 < Δ𝜙,

𝑈(𝜙1) = 1.25 × 0.0093 + 0.0001
+ |3.2148− 3.2147| = 0.0118

corresponding to 0.37% of 𝜙1. Here, 𝜙fit =
3.2147 is obtained from the least-squares curve-
fit. Similar calculations can be made for 𝜙 =
CTM, resulting in 𝑈𝜙(𝜙1) = 0.70%. It is noted
that the 𝑈𝜙 values are comparable with the 𝑈𝐹𝑆
values in Table 2 by using the method of Stern
et al. for both variables.

Figure 3. Grids used for KCS simulations (Grid 1, Grid
3, and Grid 5 from the top).

The next example is the KCS simulations
done by the University of Genova (UniGe), It-
aly.  Simulation conditions are Froude number
Fr = 0.26 and Reynolds number Re = 1.4  107.
Grid studies were conducted for a total of six
grids (ng = 6). The grid topology is an unstruc-
tured hex-dominant cartesian mesh on a paral-
lel-piped domain. Figure 3 shows example mesh
plots for three grids.

Table 4. Grid data and the outcomes of the KCS simula-
tions.

Grid Total number
of points 𝑟𝑖 CFM (e-3) CTM (e-3)

1 12,444,794 1.000 2.8074 3.0632
2 7,368,997 1.191 2.8091 3.0708
3 3,432,556 1.536 2.8476 3.1253
4 1,902,446 1.870 2.8402 3.1482
5 1,084,560 2.256 2.8504 3.1710
6 642,810 2.685 2.8571 3.1901
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Figure 4. KCS simulation results.

Table 5. Uncertainty assessment results by using the
method of Eça and Hoekstra for KCS.

Variable CFM CTM

𝜙0 2.8804 4.7707
𝛼∗ -0.0761 -1.7126
𝑝 -1.209 -0.08351
𝜎 0.0041 0.0037
Δ𝜙 0.0099 0.02538

𝜖𝜙(𝜙1) 0.0898 0.1584
𝐹𝑆 1.25 1.25

𝑈𝜙(𝜙1) 0.1186 0.2067
𝑈𝜙(%𝜙1) 4.23 6.75

Table 4 and Figure 4 present the grid data
and the outcomes of the KCS simulations for
CFM and CTM.  This example shows how it is of-
ten not possible to have the refinement ratio be
constant throughout the domain, yet the user has
attempted to keep it constant in the grid genera-
tion process.  Thus, the present grid-set does not
have a uniform grid refinement ratio and this
fact precludes the use of the method of Stern et
al.

Table 5 presents a summary of the uncer-
tainty assessment results by using the method of
Eça and Hoekstra.  The overall calculation pro-
cedures are the same for the JBC case, i.e., de-
termination of the observed order-of-accuracy
𝑝, selection of a proper error estimator 𝛿, and
the assessment of the uncertainty 𝑈𝜙 by using

the least-squares fit along with the choice for a
safety factor 𝐹𝑆.  One difference compared to the
JBC case is the selection for 𝛿.  From Table 5,
both CFM and CTM data show 𝑝 < 0.5 and 𝛿 is to
be selected among 𝛿1, 𝛿2, or 𝛿12 in Eq. (11) –
(13).  The choice is the one that gives the small-
est standard deviation 𝜎 value from the data
curve-fits.  Both the CFM and CTM data show the
smallest 𝜎 when 𝛿12 is used, which is used to
calculate 𝜖𝜙 in Table 5. The resulting 𝑈𝜙(𝜙1)
values are larger than the JBC case, 4.23% and
6.75% for CFM and CTM, respectively.

4. VALIDATIOAN PROCEDURES

4.1 Validation Methodology

Validation is defined as a process for as-
sessing simulation modelling uncertainty 𝑈𝑆𝑀
by using benchmark experimental data and,
when conditions permit, estimating the sign and
magnitude of the modelling error 𝛿𝑆𝑀 itself.

The simulation error 𝛿𝑆 is defined as the dif-
ference between a simulation result 𝑆 and the
truth 𝑇 and is composed of additive modelling
𝛿𝑆𝑀 and numerical 𝛿𝑆𝑁 errors (i.e., 𝛿𝑆 = 𝑆 −
𝑇 = 𝛿𝑆𝑀 + 𝛿𝑆𝑁).  The error in data 𝛿𝐷 is the dif-
ference between the data and the truth (i.e., 𝛿𝐷 =
𝐷 − 𝑇). The comparison error 𝐸 is given by the
difference in the data 𝐷and simulation 𝑆 values.

𝐸 = 𝐷 − 𝑆 = 𝛿𝐷 − (𝛿𝑆𝑀 + 𝛿𝑆𝑁) (20)

Numerical error 𝛿𝑆𝑁 is decomposed into
contributions from iteration number 𝛿𝐼, grid size
𝛿𝐺, time step 𝛿𝑇, and other parameters 𝛿𝑃, which
gives the following expressions.

𝛿𝑆𝑁 = 𝛿𝐼 + 𝛿𝐺 + 𝛿𝑇 + 𝛿𝑃 (21)

𝑈𝑆𝑁2 = 𝑈𝐼2 + 𝑈𝐺2 +𝑈𝑇2 + 𝑈𝑃2 (22)
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Iteration number error/uncertainty is often
considered negligible (usually reduced to ma-
chine accuracy).  Without taking into consider-
ation of other parameters, the simulation error is
the sum of grid size and time step errors, 𝛿𝑆𝑁 =
𝛿𝐺 + 𝛿𝑇, and similarly the simulation uncer-
tainty is the root-sum-square of grid size and
time step uncertainties, 𝑈𝑆𝑁2 = 𝑈𝐺2 + 𝑈𝑇2.  Here,
𝑈𝐺  corresponds to 𝑈𝐹𝑆 or 𝑈𝜙 discussed in Sec-
tions 3.1 and 3.2, and 𝑈𝑇 can be found by using
similar approaches as for 𝑈𝐺 .

Modelling errors 𝛿𝑆𝑀 can be decomposed
into modelling assumptions and use of previous
data. To determine if validation has been
achieved, 𝐸 is compared to the validation uncer-
tainty 𝑈𝑉  given by

𝑈𝑉2 = 𝑈𝐷2 + 𝑈𝑆𝑁2 (23)

If |𝐸| < 𝑈𝑉 , the combination of all the errors
in 𝐷and 𝑆 is smaller than 𝑈𝑉  and validation is
achieved at the 𝑈𝑉  level. If 𝑈𝑉 << |𝐸|, the sign
and magnitude of 𝐸 ≈ 𝛿𝑆𝑀 can be used to make
modelling improvements.

4.2 Interpretation of the Results of a Valida-
tion Effort

First, consider the approach in which the
simulation numerical error is taken to be sto-
chastic and thus the uncertainty 𝑈 is estimated.
From a general perspective, if we consider the
three variables 𝑈𝑉 , |𝐸|, and programmatic re-
quirements/tolerances 𝑈𝑟𝑒𝑞𝑑, there are six com-
binations (assuming none of the three variables
are equal):

1) |𝐸| < 𝑈𝑉 < 𝑈𝑟𝑒𝑞𝑑

2) |𝐸| < 𝑈𝑟𝑒𝑞𝑑 < 𝑈𝑉

3) 𝑈𝑟𝑒𝑞𝑑 < |𝐸| < 𝑈𝑉

4) 𝑈𝑉 < |𝐸| < 𝑈𝑟𝑒𝑞𝑑 (24)

5) 𝑈𝑉 < 𝑈𝑟𝑒𝑞𝑑 < |𝐸|

6) 𝑈𝑟𝑒𝑞𝑑 < 𝑈𝑉 < |𝐸|

In cases 1, 2 and 3, |𝐸| < 𝑈𝑉 ; validation is
achieved at the𝑈𝑉  level; and the comparison er-
ror is below the noise level, so attempting to es-
timate 𝛿𝑆𝑀𝐴 is not feasible from an uncertainty
standpoint. In case 1, validation has been
achieved at a level below 𝑈𝑟𝑒𝑞𝑑, so validation is
successful from a programmatic standpoint.

In cases 4, 5 and 6, 𝑈𝑉 < |𝐸|, so the compar-
ison error is above the noise level and using the
sign and magnitude of 𝐸 to estimate 𝛿𝑆𝑀𝐴 is fea-
sible from an uncertainty standpoint. If 𝑈𝑉 <<
|𝐸|, then 𝐸 corresponds to 𝛿𝑆𝑀𝐴 and the error
from the modelling assumptions can be deter-
mined unambiguously. In case 4, validation is
successful at the |𝐸| level from a programmatic
standpoint.

5. REVISION HISTORY

Revision 01 was a revision of QM Proce-
dures 4.9-04-01-01 “Uncertainty Analysis in
CFD, Uncertainty Assessment Methodology”
and 4.9-04-01-02 “Uncertainty Analysis in
CFD, Guidelines for RANS Codes,” which were
prepared and recommended by 22nd Resistance
Committee and adopted as interim procedures.
The QM Procedures were largely based on the
methodology and procedures of Stern et al.
(1999) [most recently Stern et al. (2001) and
Wilson et al. (2001)] and Coleman and Stern
(1997). Valuable experience was also gained at
Gothenburg 2000 A Workshop on Numerical
Ship Hydrodynamics (Larsson et al., 2000)
where present QM Procedures were recom-
mended and used.
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Revision 01 of the present guide (or proce-
dure) QM Procedure 7.5-03-01-01 “Uncertainty
Analysis in CFD, Verification and Validation
Methodology and Procedures” was updated for
clarity of presentation and expanded discussion
of verification procedures and implementation
based on three years of experience, as discussed
in Section 7 of 23rd ITTC RC Report. In partic-
ular, verification procedures were expanded to
include user options of either correction factors
or factor of safety approaches for estimating nu-
merical errors and uncertainties and discussion
was provided on fundamental and practical is-
sues to aid in implementation of verification
procedures.

Revision 02 of this procedure is a minor up-
date of Revision 01, in which the latest revisions
to the correction factor approach have been in-
corporated.

Revision 03 of this procedure is a minor up-
date of Revision 02, in which the references to
the ISO document have been updated to the lat-
est issue of the JCGM GUM, and further details
of the Least Squares Root method for estimating
error have been added.

Revision 04 of this procedure is a minor up-
date of Revision 03, in which the procedure was
checked against the list of symbols in Annex J
on the JCGM GUM and the use of upper-case
letters was retained for the uncertainty symbols
but with minor modifications in using the sub-
scripts of the symbols. Also, subscripts of sub-
scripts were replaced with the use of a comma
separating the items.

6. PARAMETERS; SYMBOLS
Symbol Description
ℎ Grid spacing or step size of numerical dis-

cretization
𝑝 Observed order of accuracy

𝑝𝑡ℎ  Theoretical order of accuracy of the simu-
lation numerical scheme

𝑟 Grid refinement ratio (or uniform parame-
ter refinement ratio)

𝑟𝑖 Grid refinement ratio of the 𝑖-th grid with
respect to the finest grid

𝑅 Convergence ratio
𝑆 Simulation result
𝑆0 Exact solution of a simulation
𝑈𝐹𝑆 Simulation uncertainty by using the

method of Stern at al.
𝑈𝜙 Simulation uncertainty by using the

method of Eça and Hoekstra
𝛿  Numerical discretization error
𝜙 Simulation result (equivalent to 𝑆)
𝜙0 Exact solution of a simulation (equivalent

to 𝑆0)
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