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Single Significant Amplitude and Confidence Intervals for Stochastic Processes

1. PURPOSE OF PROCEDURE

The purpose of this procedure is to formulate
the process for characterizing the uncertainty of
data resulting from a stochastic process, such as
ship motion data in irregular seas, collected at
either model scale, full scale or from numerical
simulations.  Ship motion data is collected in
both controlled and uncontrolled environ-
ments—typically in a controlled environment
for model-scale data and in an uncontrolled en-
vironment for full-scale data.

This procedure only deals with the statistical
uncertainty of stochastic data resulting from the
finite size of the sample.  Although this proce-
dure relates to all stochastic data, i.e. data result-
ing from the response to random excitation, it
will be dealt with as though it is ship motion data.
The uncertainty of significant wave height and
modal period is presented in ITTC Recom-
mended Procedure 7.5-02-07-01.4.

2. INTRODUCTION

Ship motion experimental data are consid-
ered random numbers because the environment
is intrinsically random and the sample sizes are
finite.

Ship motion data consists of time histories of
ship motions including surge, sway, heave, roll,
pitch, yaw, lateral and vertical accelerations at
various locations on the vessel. etc. The data
will consist of multiple records representing dif-
ferent model-test runs, full-scale measurement
periods and computational durations.  Ship mo-
tions are quantified as the mean, variance and
single significant amplitude (SSA) of these
quantities.  Statistical uncertainty is expressed in
terms of confidence intervals for the mean, var-
iance and SSA estimates.

Statistical uncertainty is a result of the finite,
rather than infinite, size of the sample data set,
making averages random.  The assumption of a
normal distribution for these averages is based
on the Central Limit Theorem.

A normal distribution is defined by its mean
value and variance.  The mean value of the esti-
mate approximately equals the estimate itself.
The variance of the estimate is computed from
the time-series data.  The uncertainty is quanti-
fied by the variance of the estimates (e.g. mean,
variance and SSA).

The calculation of the variance of an esti-
mate must account for the dependency of data
points within each record that are close to each
other in time.

Two different approaches are provided.  One
is for a case with a large number of records (runs)
while the other is for any number of records.

3. FORMAT OF THE DATA

It is assumed that the process is stationary.
In some cases, non-stationary data can be pre-
sented as stationary, see Recommended Proce-
dure 7.5-02-01-06.

The sample of the process is represented as
a set of independent records of different lengths,
where dependence may be significant within
each record.  A nested array (array consisting of
records of different length) is a convenient way
to describe this type of data

𝑋 = ൛𝑋𝑗; 𝑗 = 1, … , 𝑁𝑟ൟ
𝑋𝑗 = ൛𝑥𝑗,𝑖; 𝑖 = 1, … , 𝑁𝑗 ൟ,

(1)
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where X is used to represent the entire sample,
the index j, identifies a record and the index i
identifies a point within a record. Nr is the num-
ber of records available in the sample, and Nj is
the number of data points in the jth record. Xj
identifies the jth record. The sample X is also re-
ferred to as an ensemble and includes all records
corresponding to a single condition.

4. STATISTICAL UNCERTAINTY OF
MEAN AND VARIANCE ESTIMATES

The statistical uncertainty of mean and vari-
ance estimates is strongly affected by statistical
dependence within the data. Statistical depend-
ence within ship motions reflects the physical
nature of the rigid-body motion of a vessel on
the surface of a dense fluid.  Several phenomena
contribute to this dependence.   First, waves
themselves carry dependence because water is a
dense fluid, and the motion of water possesses
significant inertia.  A ship, acting essentially as
a filter transforms this dependence in terms of
its response.  Second, a ship has its own inertia,
which also contributes to dependence.  Third,
there are hydrodynamic forces proportional to
the accelerations, generally referred to as added
masses, which also contribute to dependences.
The fourth contributor is the hydrodynamic
memory effect, which is a result of the radiation
and diffraction of waves.

However, the practical quantification of sta-
tistical uncertainty may not always require ac-
counting for the statistical dependence.  If there
are a large number of runs, say 30 or more at the
same condition, an explicit accounting for de-
pendence may not be necessary.  The methodol-
ogy is straight forward, the mean and variance
of each run is calculated separately, and they are
then treated as an ensemble to compute the un-
certainty of the runs in total as an ensemble.

In the general case with any number of runs,
the dependence within the data run must be ac-
counted for explicitly via an estimation of the
autocovariance function, this is most important
for a small number of records. The latter helps
to quantify how much dependence is in the data.
It is done by estimating the decorrelation time.
Values in the time series of a stochastic process
can be treated as independent random variables
if the time interval between them is greater than
or equal to the decorrelation time.

Correlation is often used as a measure of de-
pendence in practical calculations.  Correlation
reflects dependence in terms of the second sta-
tistical moments.  If random numbers are inde-
pendent, their correlation is zero.  However,
zero correlation does not guarantee independ-
ence, as the latter may still manifest itself in
high-order moments.  While such a case was en-
countered in the relationship between roll angles
and roll rates (Belenky and Weems, 2019), it is
not known if dependence without correlation af-
fects the objectives of this procedure, so it is as-
sumed that the absence of correlation can be
used as a criterion for independence.

4.1 Large Number of Records

For cases where data is presented by 30 or
more independent records, the following proce-
dure is applicable.  The procedure starts by cal-
culating the mean value estimate for each record:

𝐸𝑗 = 1
𝑁𝑗

∑ 𝑥𝑗,𝑖
𝑁𝑗
𝑖=1 , (2)

where 𝑥𝑗,𝑖 is the measured value of the jth record
corresponding to time i. 𝐸𝑎 , an “ensemble” or
“population” mean value estimate for all runs
corresponding to a condition, is computed as:

𝐸𝑎 = ∑ 𝑊𝑗𝐸𝑗
𝑁𝑟
𝑗=1 . (3)
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where Nr is the total number of runs for the con-
dition and Wj is the statistical weight of each run,
based on the temporal length of each run:

𝑊𝑗 = 𝑇𝑗
∑ 𝑇𝑘

𝑁𝑟
𝑘=1

= 𝑇𝑗

𝑇𝑎
, (4)

where Tj is the temporal length of record j and
Ta is the cumulative time for all the records.  If
all of the records have the same sampling rate
(time interval between data points), these
weights can be calculated as:

𝑊𝑗 = 𝑁𝑗

∑ 𝑁𝑘
𝑁𝑟
𝑘=1

= 𝑁𝑗

𝑁𝑎
, (5)

where Nj is the number of data points in each
record and Na is the total number of data points
in all records.

The variance of the mean for the ensemble is
estimated using the formula:

𝕍൫𝐸𝑎൯ = ∑ 𝑊𝑗
2𝑁𝑟

𝑗=1 ൫𝐸𝑗 − 𝐸𝑎൯2
(6)

An estimate of the variance of the variance
for the ensemble is calculated starting using an
estimate of the variance for each record of the
ensemble.  This is calculated using the ensemble
mean:

𝑉𝑗 = 1
𝑁𝑗−1

∑ ൫𝑥𝑗,𝑖 − 𝐸𝑎൯2𝑁𝑗
𝑖=1 (7)

The next step is to calculate the ensemble-
averaged variance:

𝑉𝑎 = ∑ 𝑊𝑗𝑉𝑗
𝑁𝑟
𝑗=1 . (8)

The variance of the variance estimate is
computed as

𝕍൫𝑉𝑎൯ = ∑ 𝑊𝑗
2𝑁𝑟

𝑗=1 ൫𝑉𝑗 − 𝑉𝑎൯2
(9)

The results of Eqs. (6) and (9) are carried
forward for the assessment of uncertainty of the

final result.  A more detailed discussion of the
calculation of the estimates and the derivation of
these formulae can be found in Belenky, et al.
(2013, 2015).

4.2 Any Number of Records

For cases where data is presented by any
number of records and particularly by fewer
than 30 independent records, the variance of the
mean and variance estimates can be evaluated
using the estimates of the auto- and cross-covar-
iance functions (Levine et al. 2017; Glotzer et al.
2023), as well as the decorrelation time.

4.2.1 Estimation of Auto- and Crosscovari-
ance Functions

The autocovariance function of the jth rec-
ord is estimated as:

𝑅𝑘൫𝑋𝑗൯ = 1
𝑁𝑗

∑ ൫𝑥𝑗,𝑖 − 𝐸𝑎൯ ×𝑁𝑗−𝑘
𝑖=1

 ൫𝑥𝑗,𝑖+𝑘 − 𝐸𝑎൯,
(10)

where 𝑘 = 0,1, . . 𝑁𝑗 − 1  is the index for the
time lag.  Note that the estimate of the auto-
covariance function computed for zero-time lag
(k = 0) is the estimate of variance.  Figure 1 il-
lustrates the autocovariance function estimated
from a single record of roll motions.

Figure 1: Estimate of autocovariance from a single rec-
ord of roll motions

The estimate has an oscillatory character.  Its
magnitudes decrease until about 140 s and then

Time lag, s

Autocovariance, deg2
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increases again.  This increase of magnitudes is
a result of insufficient data at larger time lags, as
there are no physical reasons for further depend-
ence as the time passes, while there are fewer
data points available with every time lag.  The
decrease in the number of data points leads to an
appearance of “statistical noise”, manifesting it-
self in the increase of the magnitude of the auto-
covariance function.  This “noise” has zero
mean and its influence can be mitigated by av-
eraging the autocovariance estimate over all
available records.

The ensemble averaged estimate of the auto-
covariance function is expressed as:

𝑅𝑘(𝑋) =  ∑ 𝑊𝑗
𝑁𝑟
𝑗=1 𝑅𝑘൫𝑋𝑗൯. (11)

The effect of ensemble averaging is illus-
trated in Figure 2.  The magnitudes of ensemble-
averaged estimate experiences less increase in
comparison to the single-record estimates.  The
statistical “noise” from each individual record’s
estimate appears to cancel each other.

Figure 2: Estimation of the ensemble-averaged auto-
covariance function (blue).  Record estimates are in red

The mean of the squares for the jth record is
estimated as:

𝐸൫𝑋𝑗
2൯ =  1

𝑁
∑ 𝑥𝑖

2𝑁𝑗
𝑖=1 (12)

and the ensemble-averaged estimate of mean of
the squares is

𝐸(𝑋2) =  ∑ 𝑊𝑗
𝑁𝑟
𝑗=1 𝐸൫𝑋𝑗

2൯ . (13)

The estimate of autocovariance of the
squares is computed in a manner similar to that
in Eqs. (10) and (11):

𝑅𝑘൫𝑋𝑗
2൯ = 1

𝑁𝑗
∑ ቀ𝑥𝑗,𝑖

2 − 𝐸(𝑋2)ቁ𝑁𝑗−𝑘
𝑖=1

× ቀ𝑥𝑗,𝑖+𝑘
2 − 𝐸(𝑋2)ቁ ,

(14)

𝑅𝑘(𝑋2) =  ∑ 𝑊𝑗
𝑁𝑟
𝑗=1 𝑅𝑘൫𝑋𝑗

2൯. (15)

Finally the covariance function for the pro-
cess and its squares for each record of the pro-
cess and its ensemble is estimated as:

�̂�𝑘൫𝑋𝑗 , 𝑋𝑗
2൯ = 1

𝑁𝑗
∑ ൫𝑥𝑗,𝑖 − 𝐸𝑎൯𝑁𝑗−𝑘

𝑖=1

× ቀ𝑥𝑗,𝑖+𝑘
2 − 𝐸(𝑋2)ቁ ,

(16)

�̂�𝑘(𝑋, 𝑋2) =  ∑ 𝑊𝑗
𝑁𝑟
𝑗=1 �̂�𝑘൫𝑋𝑗 , 𝑋𝑗

2൯. (17)

Estimates of the autocovariance function of
the squares and covariance function for the pro-
cess and its squares are given in Appendix B.

4.2.2 Evaluation of Decorrelation Time

The autocorrelation function is the auto-
covariance function normalized by the first term
(k = 0; it is the variance estimate).

𝑟𝑘(𝑋) =  𝑅𝑘(𝑋)
𝑅0(𝑋)

= 𝑅𝑘(𝑋)
𝑉𝑎

(18)

The appearance of the estimate of the auto-
correlation function for roll motions is similar to
the autocovariance function shown in Figure 3.

The decorrelation time dc is estimated from
the ensemble-averaged estimate of the autocor-
relation function Eq. (11).

As the autocorrelation function of ship mo-
tions is oscillatory, the decorrelation time is es-
timated using its envelope.  In Figure 3, the en-
velope of the autocorrelation function is plotted

Time lag, s

Autocovariance, deg2
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by connecting the absolute values of the peaks
of the autocorrelation function by a blue line.

Figure 3: Estimate of decorrelation time with ensemble-
average autocovariance function

Two quantities are computed with the enve-
lope of the autocorrelation estimate.  The first
quantity is the time lag at which the envelopes
crosses the levels of significance (taken as 0.05)
for the first time (𝜏𝑠), see Figure 3.  The second
quantity is the position of the first local mini-
mum of the envelope (𝜏𝑚) also shown in Fig-
ure 3.  The decorrelation time is taken as the
smaller of these two quantities:

𝜏𝑑𝑐 = min(𝜏𝑠, 𝜏𝑚). (19)

The justification is as follows.  In most prac-
tical cases, a correlation below the significant
level is taken as an absence of correlation.  How-
ever, the available sample volume may be insuf-
ficient to mitigate the influence of “statistical
noise” enough to reduce the envelope below the
level of significance.

The first local minimum of the envelope may
be used as an indicator of the start of “statistical
noise”.  The correlation is expected to subside
with time as there are no physical reasons for in-
creased dependence appearing later in the pro-
cess.  Thus, the first local minimum can be in-
terpreted as the longest time for which meaning-
ful correlation was observed. The case shown in
Figure 3 has enough data that crossing the level

of significance is used to estimate the decorrela-
tion time.  A case in which the minimum of the
envelope is used to estimate the decorrelation
time is illustrated in Appendix B.

4.2.3 Calculating Variances of the Mean and
Variance Estimates

The variance of the mean estimate for the jth
record is computed from the autocovariance
function of the process:

𝕍൫𝐸𝑗൯ = 𝑉𝑎
𝑁𝑗

+ 2
𝑁𝑗

∑ ൬1 − 𝑘
𝑁𝑗

൰ 𝑅𝑘(𝑋)𝐹𝑘
𝑀
𝑘=1

= 1
𝑁𝑗

∑ ൬1 − |𝑘|
𝑁𝑗

൰ 𝑅|𝑘|(𝑋)𝑀
𝑘=−𝑀 𝐹|𝑘|

 (20)

where M is the index corresponding to the
decorrelation time dc, 𝐹𝑘 = 1 − 𝑘/𝑀 is a win-
dowing function, used to eliminate the “statisti-
cal noise”, remaining in the ensemble-averaged
estimate of the autocovariance function.

The variance of the ensemble-averaged
mean estimate is computed as:

𝕍൫𝐸𝑎൯ =  ∑ 𝑊𝑗
2𝑁𝑟

𝑗=1 𝕍൫𝐸𝑗൯. (21)

The following quantities needs to be com-
puted to estimate the variance of the variance.
The variance of the mean estimate of the squares
of the jth record is:

𝕍 ቀ𝐸൫𝑋𝑗
2൯ቁ = 1

𝑁𝑗
∑ ൬1 − |𝑘|

𝑁𝑗
൰𝑀

𝑘=−M

                       × 𝑅|𝑘|(𝑋2)𝐹|𝑘|.
(22)

The ensemble averaged value is

𝕍 ቀ𝐸(𝑋2)ቁ =  ∑ 𝑊𝑗
2𝑁𝑟

𝑗=1 𝕍 ቀ𝐸൫𝑋𝑗
2൯ቁ (23)

To reflect the dependence between the pro-
cess and its squares (which may be non-zero for
a non-Gaussian process), the covariance of the
jth record is estimated as:

Time lag, s

Autocorrelation 𝑟𝑎,𝑘
𝑥

Level of signifi-
cance 0.05

Crossing of the level of
significance 𝜏𝑠

Minimum of the
envelope 𝜏m
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ℂ ቀ𝐸𝑗, 𝐸൫𝑋𝑗
2൯ቁ =  1

𝑁𝑗
∑ ൬1 − |𝑘|

𝑁𝑗
൰𝑀

𝑘=−M

                                 × �̂�|𝑘|(𝑋, 𝑋2)𝐹|𝑘|.
(24)

The ensemble average value is computed as:

ℂ ቀ𝐸𝑎 , 𝐸(𝑋2)ቁ =  ∑ 𝑊𝑗
2𝑁𝑟

𝑗=1 ℂ ቀ𝐸𝑗, 𝐸൫𝑋𝑗
2൯ቁ. (25)

Finally, the variance of the variance estimate
for all of the data is evaluated as:

𝕍൫𝑉𝑎൯ = 𝕍 ቀ𝐸(𝑋2)ቁ  + 4൫𝐸𝑎൯2
𝕍൫𝐸𝑎൯

         −4𝐸𝑎ℂ ቀ𝐸𝑎 , 𝐸(𝑋2)ቁ .
(27)

If it is necessary to evaluate the variance of
the variance estimate of an individual record,
Eq. (27) can be applied to a single record’s val-
ues as defined by Eqs. (20), (22), and (24).

5. SINGLE SIGNIFICANT AMPLI-
TUDE ESTIMATE AND ITS STATISTI-
CAL UNCERTAINTY

By definition, the Single Significant Ampli-
tude (SSA) is the average of the largest 1/3 of
the peaks of the stochastic process with respect
to its mean.  If the process is Gaussian, its SSA
can be expressed using its variance

𝑆𝑆𝐴 𝑋 =  2ඥ𝑉𝑋 . (28)

If Eq. (28) is used without the process being
known to be normal, it can be considered to be
a convenient approximation for the variance
and/or standard deviation estimates.

The application of this approximation is con-
venient for quick analysis.  The SSA value can
be directly estimated from the data without any
knowledge regarding its probability distribution.

5.1 Estimation of Single Significant Ampli-
tude

Using the ensemble mean estimate Eq. (3),
the mean-crossing points (times) are found.
These points are presented as a nested array

𝑇𝑀 = ൛𝑇𝑀𝑗;   𝑗 = 1, … , 𝑁𝑟ൟ
𝑇𝑀𝑗 = ൛𝑇𝑚𝑗,𝑚;  𝑚 = 1, … , 𝑁𝑚𝑗 ൟ,

(29)

where m is the index of mean crossings and Nmj
is the number of mean crossings in the jth record.

The next step is to search for the peak values,
which are defined as the largest distance of the
absolute value of the sample from the mean be-
tween each pair of consecutive crossings of the
level of the mean value estimate, see Figure 4.

Figure 4: Definition of mean-crossing peaks

The total number of peak values will be:

𝑁𝑝 = ∑ ൫𝑁𝑚𝑗 − 1൯𝑁𝑟
𝑗=1 (30)

The peak data nested array must also include
the time corresponding to these points.  The data
may be presented in the form of a matrix with
three columns — record index, time of peak
value in the record, and the peak value — with
Np rows.  The matrix is defined as follows:

𝐏𝐤 = ቐ
𝑃𝑘𝑘,1 = 𝑗
𝑃𝑘𝑘,2 = 𝑡𝑝𝑗,𝑚
𝑃𝑘𝑘,3 = 𝑥𝑝𝑗,𝑚

;  𝑘 = 1, … 𝑁𝑝. (31)
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where k is the index of the peak value, which is
advanced every time a mean-crossing peak is
identified, the time and value of the peak are de-
fined as:

𝑥𝑝𝑗,𝑚 = max൫|𝑥𝑗,𝑖 − 𝐸𝑎|൯  when
𝑡𝑖 ∈ ൣ𝑇𝑚𝑗,𝑚 , 𝑇𝑚𝑗,𝑚+1൧

(32)

and 𝑡𝑝𝑗,𝑚  corresponds to 𝑥𝑝𝑗,𝑚 while

𝑘 = 1, . . . , 𝑁𝑝   and 𝑚 = 1, … , 𝑁𝑚𝑗 − 1. (33)

The next step is to find the level correspond-
ing to the largest 1/3 of the peak values.  It is, in
fact, an estimation of the largest 1/3 quantile.
This is found by sorting the peaks by value
(highest to lowest) and finding the value of the
peak that encompasses the largest 1/3 set of the
sorted list of peaks:

𝑃𝑘𝑠ሬሬሬሬሬሬሬ⃗ = sort(𝑃𝑘<3>)
𝑖𝑑1/3 = round ቀ𝑁𝑝

3
ቁ

𝑎ො1 3⁄ = 𝑃𝑘𝑠𝑖𝑑𝑠

(34)

where Pk<3> means the "3rd column of the ma-
trix Pk".

The sample of the largest 1/3 of the peaks is
then extracted from the matrix Pk:

𝐏𝐬 = ቐ
𝑃𝑠𝑙,1 = 𝑃𝑘𝑘,1
𝑃𝑠𝑙.2 = 𝑃𝑘𝑘,2  if 𝑃𝑘𝑘,3 > 𝑎ො1 3⁄

𝑃𝑠𝑙,3 = 𝑃𝑘𝑘,3

(34)

where 𝑙 = 1, . . . , 𝑁𝑠; and Ns is the total number
peaks above the 1/3-quantile estimate and will,
by definition, be the same as the index ids above:

𝑁𝑠 = 𝑖𝑑1/3 = round ቀ𝑁𝑝
3

ቁ. (36)

The estimate of SSA is the estimate of the
mean value of Ps<3>:

𝑆𝑆𝐴 = 𝐸(𝑃𝑠<3>) = 1
𝑁𝑠

∑ 𝑃𝑠𝑙,3
𝑁𝑠
𝑙=1 . (37)

Figure 5 illustrates the peak average calcula-
tion for a sample roll time history.  Peak values
are marked in green or blue.  The level of the
largest 1/3 of the peak values is set as the 66.6th
percentile of all peaks and is shown as the green
line on the figure.  The peaks above this value
are marked in blue and comprise the largest-1/3
of the peaks.  The average of these blue peaks is
the SSA estimate, which is shown as the blue
line.
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Figure 5: Peak average calculation

5.2 Uncertainty of Single Significant Ampli-
tude Estimate

To find the variance of the SSA estimate,
Eq. (37), the dependence within the sample Ps<3>

must be addressed.  The largest 1/3 of the peaks,
as well as all of the peaks, are values of the mo-
tion process at particular instants of time, which
may be dependent on one another if they are
from the same record and are close together in
time.

Peaks that were recorded within the time dif-
ference ds, are assumed to be dependent.  These
peaks are grouped together.  These groups com-
prise a series of successive peaks, which are
from the same record and for which the time in-
terval between peaks is less than dc .

A single independent peak that is not a part
of any other group makes its own group.

As these groups may consist of different
number of peaks, a nested array is again a natu-
ral way to organize this data:

𝑃𝐶 = ൛𝑃𝐶𝑗;   𝑗 = 1, … , 𝑁𝑝𝑐ൟ
𝑃𝐶𝑗 = ൛𝑃𝑐𝑗,𝑖;  𝑖 = 1, … , 𝑁𝑐𝑗 ൟ,

(38)

where Ncj is the number of peaks in the jth
"group" and Npc is the number of "groups" found
while analyzing the dependence between the
largest 1/3 of the peaks.

Once the peaks have been sorted into groups,
the variance of the peak average estimate can be
computed using a procedure similar to that for
the mean or variance of a sample without the as-
sumption of large number of independent rec-
ords.

The calculation for the variance of the peak
average follows the mean or variance approach,
except that:

 A group can contain a single peak
 Peaks from different groups are assumed to

be independent.
 The auto-covariance with respect to the dif-

ference in peak index, rather than time lag,

66.6 Percentile
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is used to account for the dependence be-
tween peaks in a group

 Autocovariance is averaged over groups, ra-
ther than records

The autocovariance function for the largest
1/3 of the peaks is estimated as:

𝑅𝑎,𝑘
𝑝 =  ∑ 𝑊𝑔𝑗

𝑁𝑔
𝑗=1 𝑅𝑗,𝑘

𝑝 (39)

where 𝑅𝑗,𝑘
𝑝  is the autocovariance estimate for

each group of dependent peaks

𝑅𝑗,𝑘
𝑝 =

⎩
⎨

⎧
1

𝑁𝑐𝑗
∑ ൫𝑃𝑐𝑗,𝑖 − 𝑆𝑆𝐴 ൯𝑁𝑐𝑗−𝑘

𝑖=1

      × ൫𝑃𝑐𝑗,𝑖+𝑘 − 𝑆𝑆𝐴 ൯;   𝑁𝑐𝑗 < 𝑘
0 ;                                        𝑁𝑐𝑗 ≥ 𝑘

 (41)

while 𝑊𝑔𝑗  is the statistical weight of each
group of dependent peaks:

𝑊𝑔𝑗 =  𝑁𝑐𝑗

𝑁𝑠
 . (42)

Figure 6 shows an example of the averaged
autocorrelation for roll as estimated using
Eq. (39).  As can be seen, the dependence covers
about 4–5 sequential peaks.

Figure 6: Estimate of averaged autocovariance for larg-
est 1/3 of the peaks for roll motion

Similar to decorrelation time, a decorrelation
peak index if found to determine how long the
dependence lasts among the largest 1/3 of the

peaks.  The autocorrelation function of the larg-
est 1/3 of the peaks does not have the same ob-
vious oscillatory character that the autocorrela-
tion function of ship motion does.  The decorre-
lation index is estimated as the smallest number
of peaks between either the crossing of the sig-
nificance level or the first local minimum, see
the example in Appendix B.

Once the averaged autocovariance function
has been estimated using Eq. (39), the variance
of the SSA estimate can be found as follows:

𝑉SSA =  ∑ 𝑊𝑔𝑗
2𝑁𝑟

𝑗=1 𝑉SSA𝑗 (43)

where

𝑉SSA𝑗 =
𝑅𝑎,0

𝑝

𝑁𝑐𝑗
+ 2

𝑁𝑐𝑗
∑ ൬1 − 𝑘

𝑁𝑐𝑗
൰ 𝑅𝑎,𝑘

𝑝 𝐹𝑘
𝑝M𝑝−1

𝑘=1  (44)

𝐹𝑘
𝑝 = 1 − 𝑘

𝑀𝑝
(45)

Mp is the decorrelation index of the largest 1/3
of the peaks

6. CONSTRUCTING CONFIDENCE
INTERVALS

6.1 General

For a sample estimate, the confidence inter-
val (CI) is defined (which reflects its uncertainty,
caused by its random nature).  A two-sided CI is
an interval around the estimate where the true
value is contained with a given probability (con-
fidence probability or confidence level).

The calculation of the confidence interval re-
quires the assumption of the probability distri-
bution of the estimate.  The lower and upper
boundaries SLow and SUp of the confidence inter-
val of the estimate S are calculated with quan-
tiles (inverse of the cumulative distribution

Averaged autocorrelation of 1/3 largest peaks

Index of a peak



ITTC – Recommended
Procedures and Guidelines

7.5-02
-01-08

Page 12 of 20

Single Significant Amplitude and Confi-
dence Intervals for Stochastic Processes

Effective Date
2024

Revision
01

function).  For two-sided confidence interval,
these boundaries are:

𝑆𝐿𝑜𝑤 = 𝑄 ቀ1−𝑃𝛽

2
ቁ ;

𝑆𝑈𝑝 = 𝑄 ቀ1+𝑃𝛽

2
ቁ

(46)

where P is the accepted confidence probability
and Q stands for quantile.

As stated in Section 2, the normal distribu-
tion is assumed for all estimates.  For the normal
distribution, the center of the range is deter-
mined by the calculated statistical estimate.  The
width of the range is determined from the vari-
ance of this estimate.  Note that this does not as-
sume that the distribution of the process itself is
normal.

If a normal distribution of the estimate is as-
sumed, Eq. (46) can be simplified, because the
normal distribution is symmetric:

𝑆𝐿𝑜𝑤 = 𝑆 − 𝐾𝛽ඥV𝑆

𝑆𝑈𝑝 = 𝑆 + 𝐾𝛽ඥV𝑆
(47)

where V𝑆 is the variance of the estimate S and
the coefficient K is one-half the non-dimen-
sional width of the confidence interval and is
calculated as:

𝐾𝛽 = 𝑄𝑁 ቀ1+𝑃𝛽

2
ቁ (48)

where QN is a quantile of the standard normal
distribution (zero-mean & unity-variance).  For
the typical confidence probably of 0.95, K

equals 

6.2 Confidence Interval for Mean Value
and Variance Estimates

The upper and lower bounds of the confi-
dence interval for the mean values are:

𝐸𝐿𝑜𝑤 = 𝐸𝑎 − 𝐾𝛽ඥ𝑉𝐸𝑎

𝐸𝑈𝑝 = 𝐸𝑎 + 𝐾𝛽ඥ𝑉𝐸𝑎 .
(49)

In these expressions, 𝐸𝑎 is the mean esti-
mate for the ensemble, Eq. (3); and 𝑉𝐸𝑎  is the
estimate of the variance of the mean for the en-
semble, Eq. (6) for a large number of runs or
Eq. (21) for any number of runs.

Expressions for the confidence interval of
the variance estimates are:

𝑉𝐿𝑜𝑤 = 𝑉𝑎 − 𝐾𝛽ට𝑉𝑉𝑎

𝑉𝑢𝑝 = 𝑉𝑎 + 𝐾𝛽ට𝑉𝑉𝑎

(50)

where 𝑉𝑎 is the variance estimate for the ensem-
ble, calculated with Eq. (8); 𝑉𝑉𝑎 is the variance
of the variance estimate for the ensemble, calcu-
lated with Eq. (9) for a large number of runs or
Eq. (27) for any number of runs.

6.3 Confidence Interval for SSA Estimate

If the SSA is estimated from the data as de-
scribed in subsection 5.1, the upper and lower
boundaries of the confidence interval are:

𝑆𝑆𝐴𝐿𝑜𝑤 = SSA − 𝐾𝛽ට𝑉SSA

𝑆𝑆𝐴𝑈𝑝 = SSA + 𝐾𝛽ට𝑉SSA

(51)

where the SSA estimate is computed with
Eq. (37) and its variance 𝑉SSA is computed using
Eq. (43).

For rapid approximate analysis, when
Eq. (28) is used to estimate the SSA, the bound-
aries of its confidence interval can be computed
using the boundaries of the variance estimate,
defined by Eq. (50):
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𝑆𝑆𝐴 𝐿𝑜𝑤 = 2ඥ𝑉𝐿𝑜𝑤

𝑆𝑆𝐴 𝑈𝑝 = 2ට𝑉𝑈𝑝.
(52)

Alternatively, the boundaries of the confi-
dence interval can be computed using the Delta
method, see Appendix A:

𝑆𝑆𝐴 𝐿𝑜𝑤 =  2ඥ𝑉𝑎 − 𝐾𝛽ට𝑉𝑉𝑎
𝑉𝑎

𝑆𝑆𝐴 𝑈𝑝 =  2ඥ𝑉𝑎 + 𝐾𝛽ට𝑉𝑉𝑎
𝑉𝑎

(53)

where 𝑉𝑎 is the variance estimate for the ensem-
ble, calculated with Eq. (8); 𝑉𝑉𝑎 is the variance
of the variance estimate for the ensemble, calcu-
lated using Eq. (9) for a large number of runs or
Eq. (27) for any number of runs.

6.4 Alternative Method: Self-Normaliza-
tion

Self-normalization is an alternative ap-
proach to constructing confidence intervals
from the data.  The background and references
for this approach are available in Pipiras et al.
(2018) and Glotzer et al. (2023).  The method is
simple to implement as it does not require the
autocorrelation of the data, so the application of
the method does not depend on the number of
runs.

In this approach, the data are organized in a
simple array:

𝑌 = ൛𝑦𝑖; 𝑖 = 1, … , 𝑁𝑦ൟ (54)

where Ny is the total number of points available.
First, a cumulative sum is computed:

𝑆𝑇𝑗 = ∑ ൫𝑦𝑖 − 𝐸𝑦൯𝑗
𝑖=1 𝑗 = 1, … , 𝑁𝑦, (55)

where 𝐸𝑦  is the mean value estimate of the data
array Y.  Then the sum of the squares of (55) is
computed:

𝑆𝑄 = 1
𝑁𝑦

2 ∑ 𝑆𝑇𝑖
2𝑁𝑦

𝑖=1 . (56)

The boundaries of the confidence interval
for the mean value estimate 𝐸𝑌  are computed as:

𝐸𝑌𝐿𝑜𝑤 = 𝐸𝑌 − 𝑢𝛼ට
𝑆𝑄
𝑁𝑦

𝐸𝑌𝑈𝑝 = 𝐸𝑌 + 𝑢𝛼ට
𝑆𝑄
𝑁𝑦

(57)

where 𝑢𝛼 is the critical value.  For the typical
confidence probably of 𝑃𝛽 = 0.95

𝑢𝛼 = √45.4 = 6.738. (58)

Critical values for other confidence proba-
bilities are available in Lobato (2001).

To construct the confidence interval for the
mean value, Eqs. (55)–(57) are applied to time
history data.  To construct the confidence inter-
val for the variance estimate, Eqs. (55)–(57) are
applied to the centered squares of the data:

𝑧𝑖 = ൫𝑦𝑖 − 𝐸𝑎൯2
, 𝑖 = 1, … , 𝑁𝑦 (59)

where 𝑦𝑖 are time history data.

To construct the confidence interval for the
SSA estimate, Eqs. (55)–(57) are applied to the
largest 1/3 of the peaks:

𝑦𝑙 = 𝑃𝑠𝑙,3 ; 𝑙 = 1, … , 𝑁𝑠. (60)

In many practical cases, the confidence in-
terval constructed using self-normalization is
slightly wider than that obtained using the other
methods.

7. LIST OF SYMBOLS

𝑎ො1 3⁄  Process value corresponding to largest 1/3
of the peaks.

ℂ(… , … ) Covariance.
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ℂ ቀ𝐸𝑎 , 𝐸(𝑋2)ቁ  Covariance between the ensem-
ble-averaged mean estimate of the pro-
cess and the the ensemble-averaged
mean estimate of process of the squares.

ℂ ቀ𝐸𝑗, 𝐸൫𝑋𝑗
2൯ቁ  Covariance between the mean

estimate of the process and the mean
estimate of process of the squares of jth
record.

�̂�𝑘൫𝑋𝑗 , 𝑋𝑗
2൯ kth time lag of covariance function
estimate of jth record of the process X
and the process of the squares.

�̂�𝑘(𝑋, 𝑋2)  kth time lag of ensemble-averaged
covariance function estimate of the
process X and the process of the
squares.

𝔼(… ) Expected value
𝐸𝑎  Ensemble-averaged mean value estimate
𝐸ቀ𝑋2ቁ Ensemble-averaged mean value esti-

mate of the process of the squares.
𝐸𝑗 Mean value estimate of jth record.
𝐸ቀ𝑋𝑗

2ቁ Mean value estimate of jth record of the
process of the squares.

𝐹𝑘 Windowing factor for kth time lag.
𝑖𝑑1/3 Index corresponding to largest 1/3 of the

peaks.
K One-half the non-dimensional width of the

confidence interval.
M Index corresponding to the decorrelation

time.
Mp Decorrelation index of the largest 1/3 of

the peaks
Na Total number of points.
Ncj Number of dependent peaks in a group.
Nj Number of points in jth record.
NG Number independent groups of peaks.
Nmj Number of mean crossings in jth record.
Np Total number of peaks.
Ns Number largest 1/3 of the peaks.
Nr Number of records.
PC Array of groups of dependent peaks.
Pc Value of a peak in the group of dependent

peaks.
Pk Matrix of peak data.

Pks Matrix of sorted peak data.
Ps Matrix of the largest 1/3 of the peaks.
P Confidence probability.
Q Quantile of a distribution.
QN Quantile of standard normal distribution.
𝑅𝑘(𝑋) kth time lag of ensemble-averaged au-

tocovariance function estimate of the
process X.

𝑟𝑘(𝑋)kth time lag of ensemble-averaged auto-
correlation function estimate of the
process X.

𝑅𝑘൫𝑋𝑗൯ kth time lag of autocovariance function
estimate of jth record of the process X.

𝑅𝑘(𝑋2) kth time lag of ensemble-averaged au-
tocovariance function estimate of the
process of the squares.

𝑅𝑘൫𝑋𝑗
2൯ kth time lag of autocovariance function

estimate of jth record of the process of
the squares.

𝑅𝑎,𝑘
𝑝  kth time lag of averaged covariance func-

tion estimate of the largest 1/3 of the
peaks.

𝑅𝑗,𝑘
𝑝  kth time lag of covariance function of the

largest 1/3 of the peaks estimated over
jth group of dependent peaks.

SSA Single significant amplitude.
Ta Total duration of the ensemble, s.
Tj Duration of the jth record, s.
TM Sample of mean-crossing time instances.
Tm Mean-crossing time instance, s.
t Time, s.
tp Time instant of mean-crossing peak, s.
𝕍(… ) Variance
𝑉𝑎  Ensemble-averaged variance estimate.
𝑉𝑎𝑥2 Ensemble-averaged variance estimate of

the process of the squares.
𝑉𝑗 Variance estimate of of jth record.
𝑉𝑗𝑥2 Variance estimate of jth record of the pro-

cess of the squares.
𝕍൫𝐸𝑎൯ Variance of ensemble-averaged mean

value estimate
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𝕍 ቀ𝐸(𝑋2)ቁ  Variance of ensemble-averaged
mean value estimate of the process of
squares

𝕍൫𝑉𝑎൯ Variance of ensemble-averaged vari-
ance estimate.

𝑉𝑆𝑆𝐴 Variance of SSA estimate.
𝑉𝑆𝑆𝐴 Variance of SSA estimate of jthe record.
Wj Statistical weight of a record.
𝑊𝑔𝑗 Statistical weight of a group of dependent

peaks.
X Data sample as an ensemble of records.
x Process value.
xp Absolute value of mean-crossing peak.
dc Decorrelation time, s.
m Time of the first minimum of the envelope

of the autocorrelation estimate, s.
s Time of crossing of the level of signifi-

cance, s.
⬚  Estimate (“hat” above a symbol).
⬚𝐿𝑜𝑤 Lower boundary of confidence interval.
⬚𝑈𝑝 Upper boundary of confidence interval.
൛⬚𝑗,𝑖ൟ Nested array: ith value of jth record.
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DELTA METHOD FOR SSA

Eq. (28) is a deterministic function of a sin-
gle random argument—the variance estimate 𝑉𝑋 .
In the delta method, this function is expanded in
a Taylor series around its mean value 𝑉0 =
𝔼൫𝑉𝑋൯

𝑆𝑆𝐴 ൫𝑉𝑋൯ ≈ 𝑆𝑆𝐴 (𝑉0) + 𝑑𝑆𝑆𝐴 (𝑉𝑋)
𝑑𝑉𝑋

ቚ
𝑉=𝑉0

൫𝑉𝑋 − 𝑉0൯

     + 1
2

𝑑2𝑆𝑆𝐴 (𝑉𝑋)
𝑑𝑉𝑋

2 ฬ
𝑉=𝑉0

൫𝑉𝑋 − 𝑉0൯2
+. ..           

(A1)

Eq. (A1) is then linearized, so the terms of
second order and higher are neglected.  Evalua-
tion of the derivative and substitution into
Eq. (28) yields the following linearized function:

𝑆𝑆𝐴 𝐿𝑖𝑛൫𝑉𝑋൯ = 2ඥ𝑉0 + (𝑉𝑋−𝑉0)

ඥ𝑉0
. (A2)

The variance of the variance estimate is
known: 𝑉𝑉𝑥  for each process of interest.  The
mean value of the estimate 𝑉0 = 𝔼൫𝑉0൯ is a de-
terministic value, i.e. is a constant in Eq. (A1).

𝕍൫𝑉0൯ = 0   and   𝕍൫2ඥ𝑉0൯ = 0.

Applying the rule for the variance of a linear
function to Eq. (A2) yields:

𝕍 ቀ𝑆𝑆𝐴 𝐿𝑖𝑛൫𝑉𝑥൯ቁ = 𝕍(𝑉𝑥)
𝑉0

(A3)

The true mean value for the variance esti-
mate 𝑉0 = 𝔼൫𝑉𝑥൯ is not known, so it is replaced
by its estimate, which is the variance estimate
itself:

𝑉0 ≈ 𝑉𝑋

and Eq. (A3) becomes:

𝕍 ቀ𝑆𝑆𝐴 𝐿𝑖𝑛൫𝑉𝑥൯ቁ ≈ 𝑉𝑉𝑥
𝑉𝑥

= 𝑉𝑆𝑆𝐴 . (A4)

CALCULATION EXAMPLE

B.1. General Description

Figure B1: Body plan for the ITTC-A1 ship

An example for this procedure uses the
ITTC-A1 ship (Umeda, et al., 2000), whose
principal particulars are summarized in Ta-
ble B1.  This configuration was used in the
ITTC parametric roll benchmarking (ITTC,
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2005) and SAFEDOR project (e.g., Spanos &
Papanikolaou 2009).  Roll decay data were
available from the latter reference.  The lines are
shown in Figure B1.

A fast volume-based simulation tool
(Weems & Belenky 2023) was used to generate
sample data.  The simulations included 3 de-
grees of freedom motions:  heave-roll-pitch.  A
body-nonlinear formulation was applied for hy-
drostatic and Froude-Krylov forces.  Diffraction
and radiation for heave and pitch and diffraction
for roll was approximated from the potential
flow simulation tool LAMP (Large Amplitude
Motion Program, Shin, et al. 2003) while added
mass and damping for roll was extracted from
roll decay test data from Spanos & Papaniko-
laou (2009).

Table B1: Hull form characteristics for the

ITTC-A1 ship

Length BP, m 150
Breadth, m 27.2
Draft amidships, m 8.5
KG , m 10.24
GM ,m 1.38
CB 0.667
CM 0.959
CWP 0.786

The wave environment was represented by
long-crested irregular waves generated with a
Bretschneider (1959) spectrum.  The significant
wave height was 7.5 m and the modal period
was 14 s.  The spectrum was discretized with
240 frequencies from 0.2 to 0.8 1/s.  The time
step was 0.5 s, with a ramp-up time of 10 s.  Cal-
culations were done for a forward speed of 10
knots in stern quartering seas corresponding to a
relative heading angle of 45 degrees.  Duration
of a record without self-repeating effect was 40
min.  In total, 300 records, totalling 200 hours of
data, were produced.

B.2. Large Number of Records

For the illustration of calculations with the
assumption of a large number of records availa-
ble, a set of records with indices 100–130 was
used, totaling 31 records covering 20.7 hours.
Calculations are presented for roll motions.  Es-
timates of mean value, variance, SSA and re-
lated values are shown in Table B2.

Table B2: Large number of records: mean and variance
estimates

Estimate of mean value, deg -0.833
Estimate of variance. deg2 105.34
Variance of the mean, deg2 1.1 10-4

Variance of the variance, deg4 3.452
Self-normalization: sum of squared cumulatives
For mean value, deg2 2.139
For variance, deg4 2.82 104

Intermediate results for SSA calculations,
using both the variance estimate and counting of
peaks are given in Table B3.  To evaluate decor-
relation time, which is required for grouping the
largest 1/3 of the peaks, the autocorrelation of
motions was estimated; it is shown in Figure 3
of the main text of the procedure.  The autocor-
relation function of the largest 1/3 of the peaks
is shown in Figure 6 of the main text of the pro-
cedure.

Table B3: Large number of records: SSA estimates

SSA from variance estimate, deg 20.52
Total number of peak values 9041
Number of largest 1/3 of the peaks 3014
Roll angle, corresponding to the largest 1/3
of the peaks, deg

15.53

SSA from averaging the largest 1/3 of the
peaks, deg

20.6

Decorrelation time for the process, s 138.8
Number of groups of dependent peaks 125
Decorrelation index 5
Variance of SSA estimate, deg2 0.02
Standard deviation of SSA estimate, deg 0.142
Sum of squared cumulatives for self-nor-
malization, deg2

2.847
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Confidence intervals for mean value and
variance estimates, constructed with normal dis-
tribution Eqs. (49) & (50) and self-normaliza-
tion Eq. (57), are shown in Figures B2 and B3
respectively.

Figure B2: Confidence interval for mean values: (1) nor-
mal distribution (2) self normalization

Figure B3: Confidence interval for variances: (1) normal
distribution (2) self normalization

The confidence interval for the SSA was
constructed in 5 different ways:

1. “Boundary” method Eq. (52) with SSA es-
timated using Eq. (28)

2. Delta method Eq. (53) with SSA estimated
using Eq. (28)

3. “Boundary” method Eq. (52) applied to
confidence interval constructed with self-
normalization Eq. (57), with SSA esti-
mated using Eq. (28)

4. SSA estimated by averaging the 1/3-highest
peaks Eq. (37), confidence interval is con-
structed using normal distribution, while
the variance of SSA is computed using
Eq. (43)

5. SSA estimated by averaging the 1/3-highest
peaks Eq. (37), confidence interval is con-
structed using self-normalization Eq. (57)

The results using these five methods are
shown in Figure B4, where the numbers corre-
spond to the methods given above.

Figure B4: Confidence interval for SSA estimated using
a large number of records, see the text for explanation of

numbers

B.3. Any Number of Records

To illustrate calculations without the as-
sumption of a large number of records available,
a set of records with indices 1–7 was used, cov-
ering 4.7 hours in total.  Calculations are again
presented for roll motions.  Estimates of mean
value, variance, SSA and related values are
given in Table B4.  The ensemble autocorrela-
tion function and the estimate of decorrelation
time is depicted in Figure B5.  Estimates of the
autocovariance of squares and covariance of
squares with the process values are shown in
Figures B6 and B7, respectively.

Figure B5: Estimate of decorrelation time with auto-
covariance function averaged over 7 records

 Mean value, deg

1 2

 Variance, deg2

1 2

 SSA, deg

1 2 3 4 5

Time lag, s

Autocorrelation 𝑟𝑎,𝑘
𝑥

Level of sig-
nificance 0.05

Crossing of the level of
significance 𝜏𝑠

Minimum of the
envelope 𝜏m
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Intermediate results of the SSA calculation,
both for the variance estimate and using count-
ing of peaks, are in Table B5, while the estimate
of the autocorrelation function of the largest 1/3
of the peaks is shown in Figure B8.

Figure B6: Estimate of autocovariance of squares of val-
ues of the process

Figure B7: Estimate of autocovariance of squares and
process values

Table B4: Mean and variance estimates using the method
for any number of records.

Estimate of mean value, deg -0.808
Estimate of variance. deg2 99.62
Decorrelation time, s 162.5
Variance of the mean, deg2 2.27 10-3

Variance of the mean squares, deg4 40.17
Covariance of the mean and mean squares,
deg3 -0.368

Variance of the variance, deg4 38.99
Self-normalization: sum of squared cumulatives
For mean value , deg2 2.384
For variance, deg4 6.45 104

Confidence intervals for the mean value and
variance estimates, constructed with normal dis-
tribution Eqs. (49), (50) and self-normalization
Eq. (57), are depicted in Figures B9 and B10 re-
spectively.

Table B5: SSA estimates using the method for any num-
ber of records.

SSA from variance estimate, deg 19.96
Total number of peak values 2045
Number of largest 1/3 of the peaks 682
Roll angle, corresponding to the largest 1/3
of the peaks, deg

14.94

SSA from averaging the largest 1/3 of the
peaks, deg

20.30

Number of groups of dependent peaks 29
Decorrelation index 5
Variance of SSA estimate, deg2 0.068
Standard deviation of SSA estimate, deg 0.261
Sum of squared cumulatives for self-nor-
malization, deg2

4.86

Figure B8: Estimate of averaged autocovariance for larg-
est 1/3 of the peaks for roll motion

Figure B9: Confidence interval for mean values: (1) nor-
mal distribution (2) self normalization

The confidence interval for SSA was con-
structed in 5 different ways:

Time lag, s

Autocovariance 𝑅𝑎 ,𝑘
𝑥2  deg4

Time lag, s

Autocovariance 𝑅𝑎 ,𝑘
𝑥𝑥2 deg3

Averaged autocorrelation of 1/3 largest peaks

Index of a peak

1 2

Mean value, deg
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Figure B10: Confidence interval for variances: (1) nor-
mal distribution (2) self normalization

1. “Boundary” method Eq. (52) with SSA es-
timated using Eq. (28)

2. Delta method Eq. (53) with SSA estimated
using Eq. (28)

3. “Boundary” method Eq. (52) applied to
confidence interval constructed using self-
normalization Eq. (57), with SSA esti-
mated using Eq. (28)

4. SSA estimated by averaging the 1/3-highest
peaks Eq. (37), confidence interval is con-
structed with normal distribution, while
the variance of SSA is computed using
Eq. (43)

5. SSA estimated by averaging the 1/3-highest
peaks Eq. (37), confidence interval is con-
structed using self-normalization Eq. (57)

The results using these five methods are
shown in Figure B11 where the numbers corre-
spond to the methods given above.

Figure B11: Confidence interval for SSA estimated us-
ing any number of records, see the text for explanation

of numbers

 Variance, deg2

1 2

 SSA, deg

1 2 3

4 5


