Name of organization		Year of information updating	
University of Michigan		2017	
Year established 1817		Year of joining the ITTC 1948	
Address		Status in the ITTC	
1085 South University, Ann Arbor, Michigan 48109, USA		Member Advisory Council	
Contact details (phone, fax, e-mail)		Website	
Yin Lu (Julie) Young		http://mhl.engin.umich.edu/	
Email: <u>ylyoung@umich.edu</u>			
Phone: 734-647-0249			
Fax: (734) 763-3488			
Type of facility	Year constructed	d/upgraded	
Towing tank, cavitation tunnel, wind-wave tank, film drop/impact test laboratory, fully developed	1904/2015		
turbulent flow test laboratory, marine renewable			
energy laboratory			
Name of facility	Location (if differen	ent from the above address)	
Marine Hydrodynamic Laboratory	Same as above	,	
Main characteristics (dimensions of tank/basin/tes	st section; for simula	ators: full mission, part task or desk top)	
-see attached slides			
Drawings of facility – no change to dimensions ar updated/replaced.	nd primary capabilitie	es, but key components have been regularly	

Detailed characteristics (carriages, wave/current/wind generators, instrumentations, etc.)	
, J. , , , , , , , , , , , , , , , , , ,	
Applications (Tests performed)	
Resistance and seakeeping tests	
Self-propelled tests	
Open water propeller tests – wetted and cavitating	
Wave-structure interaction tests	
Wind-wave interaction tests	
Wave-structure interaction tests	
Impact/drop tests	
Added mass and damping studies.	
Skin-friction studies in fully developed turbulent flow	
Renewable energy device tests	
Air-layer drag reduction tests	
Biofilm and drag studies	
Published description (Publications on this facility)	

Facilities: Physical model basin/tow tank

Carriage drive system type and total power

optimum speed regulation 109.7 meters (360.0 feet)

using computer control for

Four 5kW brushless servo motors

Tank length

6.7 meters (22 feet)

Tank width

Tank depth (to edge of trough) Tank depth (to edge of trough)

3.05 meters (10.0 feet)

Carriage type

Manned bridge and unmanned trailer.

Carriage speed

(min. and max.) 0.08 to 6.10 m/s (0.25 to 20.0 ft/s)

Wavemaker type and class

Plunger type capable of generating regular and irregular waves; computer generated for any spectrum.

Wave making parameters

Wave Period – 0.5 to 2.0 seconds Wave length – 0.39 to 6.24 meters (1.3 to 20.5 feet)

Maximum wave height – 0.46

meters (1.5 feet)

Run time cycle

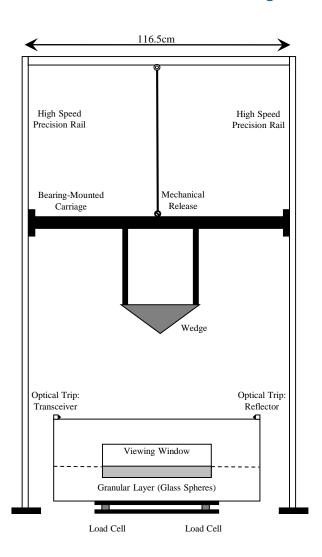
Variable depending on the type of test and size of model (typically 15 minutes without waves and 30

minutes with waves)

MARINE HYDRODYNAMICS LABORATORY

Facilities: Wind-Wave Tank

- Width: 70cm
- Length: 35m
- Depth: 1.2m
- Programmable wavemaker
- Winds to 30m/s
- Optical viewing all 4 sides
- PIV/PTV system
- PLIF system
- Tri- and six-axis forces and moments
- High-speed video

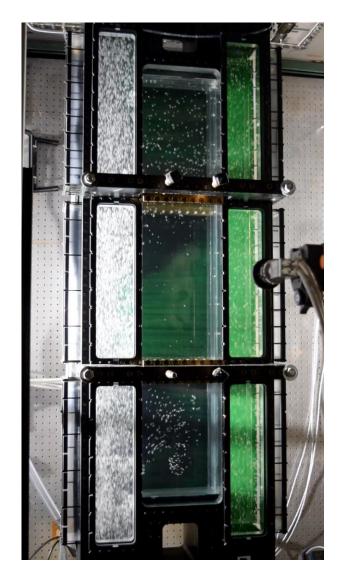

Facilities: Flow tunnel/ mini-Large Cavitation Channel

- 1/14th scale model of the USN Large Cavitation Channel in Memphis, TN
- Speeds to 25 m/s
- Test Section:21.8cm x 21.8cm
- Pressures to at least 200KPa abs
- Test section access all sides
- Splitter plates
- De-aeration equipped

Facilities: Impact/drop laboratory

- High-speed rails 10m/s
- Drop height 2m
- High-speed imagers to capture impact
- Reservoir for water, glass beads, etc.
- Load cells to 250,000 lb/1.1MN and 30KHz response
- Wedge-entry problems

Facilities: Fully-Developed Turbulent Flow Facility for Skin-Friction Evaluation



MARINE HYDRODYNAMICS

LABORATORY

- Utilizes streamwise pressure drop and PIV measurements for friction evaluation
- Speeds to 0 to 20 m/s
- Test Section:
 1.2 m x 0.1 m x 0.007 m
- Pressures to at least 200KPa abs
- Test section access all sides
- De-aeration equipped
- All S.S., glass, and PVC construction

Facilities: Parallel flow mixing loop

- Mixing of two vertical laminar and turbulent single and of two-phase flows
- Independently controlled parallel flow loops connected by a variable height, narrow gap (0 to 50 mm)
- Inlet Reynolds number (Re_{Dh}): 40k
 to 100k
- Test sections: 127 mm x 127 mm
- LDV, Stereo PIV, PLIF

