Name of organization UCL		Year of information updating 2016
Year established		Year of joining the ITTC
1826		2016
Address		Status in the ITTC
Naval Architecture & Marine Engineering (NAME) Office		Member
Department of Mechanical Engineering		
Roberts Building,		
Torrington Place, London		
WC1E 7JE		
Contact details (phone, fax, e-mail)		Website
Phone: +44 20 7679 0363		http://www.ucl.ac.uk/mecheng/research/marine
e-mail: giles.thomas@ucl.ac.uk		
Type of facility	Year constru	ucted/upgraded
Circulating water flume	2005	
Name of facility	Location (if	different from the above address)
Re-circulating Coastal Flume Tank	Lower Basem	ent

UCL Fluids Research Laboratory

Main characteristics (dimensions of tank/basin/test section; for simulators: full mission, part task or desk top)

Length	20.0m
Width	1.2m
Water Depth	0.3m - 0.7m*

*Depth can vary indiscriminately within this range for recirculating only tests. For wave tests the depth must be 0.3m, 0.5m or 0.7m.

Tank has a glass base raised 500mm above the concrete floor. Water is re-circulated underneath the tank through three pipes. Flow enters and exits the flume through stainless steel chambers at each end containing turning vanes to redirect and smooth the flow. A removable mesh plate covers the chamber to allow access for adjustment of flow straighteners.

Drawings of facility

Instrumentation:

- Resistive Wave Probes
- Velocity flow meter using Doppler (Vectrino)
- OBUG Type SGA-A Load Cells, Calibrated to 0.001V
- VN-100 Rugged Inertial Measurement Unit and Attitude Heading Reference System (3-axis accelerometer with gyros, magnetic sensor and barometric pressure sensor)

Recirculation (current generator):

Flow	< 6m/s at 0.7m
Flow Straightener	Stainless guide vanes and mesh plates
Pump	500lt/s (Axial Flow)
Drive	Programmable Variable Speed

Return flow runs through three 300mm diameter PVC pipes. Each pipe has an axial propeller thruster pump with the speed controlled by an electronic variable speed drive. All three are driven by a single 37kW type 650 electronic variable speed drive. There are five full width turning vanes fitted across the full width of the discharge chambers with a single stainless steel perforated plate fitted on the floor of the tank. All can be removed, moved and adjusted.

Wave Maker (double-ended):

Frequency Range	0.2-2.0Hz	
Wave Height	0.45m at 0.55Hz	
Water Depth	0.3 - 0.7m	
Control	Programmable digital position and absorption	
Wave Angle	< 90 ⁰ at 1.2Hz	
Drive	Brushless Servo	
Туре	Flap (Single Piston)	

Software and control (waves):

Built in spectra	Pierson Moskovitch, ISSC, Scott Breitschneider,	
	Neumann, Gaussian Mitsuyasu and JONSWAP	
Spreading	Cos ⁿ , Cos ²ⁿ , phase focusing	
Absorption	Programmable	
Special Effects	Focusing	

Tank: The sides and base of the tank are made from toughened 15mm glass.

Beach: Removable beach with varying slope

Applications (Tests performed)

Tsunami generation Investigation of scour in sediment Generation of energy from a current turbine Investigation of breaking waves Visual Observation of underwater effects (using glass sides)

Published description (Publications on this facility)

Stagonas, D; Warbrick, D; Muller, G and Magagna, D (2011). Surface tension effects on energy dissipation by small scale, experimental breaking waves. Coastal Engineering , 58 (9) pp. 826-836. (2011)

Eames, I., Jonsson C., and Johnson, P.B. The growth of a cylinder wake in turbulent flow. *Journal of Turbulence*, 12:N39, 2011a

Eames, I., Johnson, P.B., Roig, V., and Risso, F. Effect of turbulence on the downstream velocity deficit of a rigid sphere. *Physics of fluids*, 23(9), 2011b.

Johnson, P.B; Wojcik, A; Drake, KR and Eames, I (2013). Impulsively started actuator surfaces in high-Reynoldsnumber steady flow. *JOURNAL OF FLUID MECHANICS, 733 302-324 (2013).*