

Shallow water bottom: Adjustable over length and depth

Towing carriage:

Total power: 128 kW, friction drive system, 8 electric engines (4 large, 4 small) Speed range: 1 mm/s <-> 3000 mm/s Towing capacity: 50 kN

Transverse carriage: (mounted at the back of the towing carriage) Speed range: 1 mm/s <-> 500 mm/s Static Load capacity (horizontal, vertical): 5 kN, 10 kN Load application on vertical lever: up to 1.2 m Maximum driving force : 3 kN

Above water service carriage: (can be either self-driven or pushed by towing carriage) Speed (pushed): 1 – 1500 mm/s Speed (self-driven): 0.2 m/s & 0.75 m/s

Underwater rail system:

Two independent systems, one on the basin bottom at the centre line, a second one at the basin walls; both capable to carry test setups or measuring and documentation equipment (sensors, underwater video, etc.)

Mobile Wavemaker:

Type: Flap, 4 elements of 4 x 2.5 m width Max. wave height: 250 mm (at a wave period of 1.8 s) Max. wave period: 3 s Total power: 10 kW

DP-System: (Interfacing of customer DP-system possible) Number of actuators: 16 Modes: manual, tracking, station keeping

Motion tracking system Qualisys:

Number of cameras: 6 Degrees of freedom: 6

Cold room for property testing:

Refrigeration capacity: 40 kW Room temperature: +5 to -30 °C Test equipment:

- Simple supported beam test frame
- Uniaxial compression test frame
- Friction table
- Universal stage
- > Microtome

Applications (Tests performed)

Icebreaking ships:

- Resistance tests & Self-propulsion tests as towed propulsion tests
- Free running propulsion tests
- Maneuvering tests
- Brash ice channel tests
- Dynamic positioning tests

Structures in Ice:

- > Ice forces and dynamic behavior of fixed structures
- Mooring loads and dynamic behavior of floating structures
- Global and local loads on structures
- Global ice forces on artificial islands
- Ice forces on offshore loading terminals
- > Ice accumulation and ice pile-up on artificial islands and arctic harbor piers

Published description (Publications on this facility)
www.hsva.de
Karl-Ulrich Evers, (2015),
Modelling Ice Processes in Laboratories and Determination of Model Ice Properties
Cold Regions Science and Marine Technology, [Ed. Pat Langhorne], in Encyclopedia of Life Support Systems (EOLSS),
Developed under the Auspices of the UNESCO, Eolss Publishers, Paris, France, [http://www.eolss.net]
Schröder, C., Kerkeni, A., Jorde, J. (2015)
Challenges of Ice Model Tests on Moored DP Assisted Structures
ATC 2015, Copenhagen, Denmark
Evers, KU., Reimer, N. (2015)
Wave Propagation in Ice – A Laboratory Study
POAC 2015, Trondheim, Norway
Jochmann, P., Evers KU., Haase, A. (2014)
Best Practice in Ice Model Testing on Moored Floaters
ATC 2014, ATC, Houston, Texas, USA
Haase, A., Jochmann, P. (2013)
Free Running Model Technology for Dynamic Positioning in an Ice Model Basin
AMT2013, Gdansk, Poland
Evers, KU., Jochmann, P., (2011)
Experiences at HSVA with Model Testing of Moored Structures in Ice-covered Waters
POAC 2011, Montréal, Canada
Evers, KU., Jochmann, P. (1993)
An Advanced Technique to Improve the Mechanical Properties of Model Ice Developed at the HSVA Ice Tank
POAC 1993, Hamburg, Germany