

Name of organization FORCE Technology (Former Danish Maritime I	Year of information updatingitute)2016
Year established 1959	Year of joining the ITTC
Address Hjortekærsvej 99 DK-2800 Kgs. Lyngby Denmark	Status in the ITTC
Contact details (phone, fax, e-mail) Tel: <u>+45 43 25 07 00</u> Fax: +45 43 25 07 01	Website forcetechnology.com
Type of facility Boundary-layer wind tunnel	ear constructed/upgraded
Name of facility WT2	ocation (if different from the above address)

Main characteristics (dimensions of tank/basin/test section; for simulators: full mission, part task or desk top) Open Circuit Boundary-Layer Wind Tunnel (BLWT). Dimension of test section: H= 1.8m (Adjustable), W= 2.6m, L= 20.8m.

Drawings of facility

Detailed characteristics (carriages, wave/current/wind generators, instrumentations, etc.)

Open Circuit Boundary-Layer Wind Tunnel Max tunnel Speed: 24m/s Adjustable ceiling. Turn table. Automatic traversing mechanism. Boundary-layer suction. Forced motion rigs for section models High Reynolds number rigs for vortex shedding tests with large section models. Smoke generators. Static and dynamic rigs for section model tests

Applications (Tests performed)

Static and dynamic wind load Wind loads – pressure tests Air pollution Wind environment Flow visualization Urban development Wind climate Section model tests

Published description (Publications on this facility)

Hansen, S.O. and E.G. Sørensen: "A New Boundary-Layer Wind Tunnel at the Danish Maritime Institute", Journal of Wind Engineering and Industrial Aerodynamics, vol. 18, 1985, pp. 213-224.